ILD Seismic design for ILD Detectors

ILD WebEx Integration Meeting – March 2nd 2012

Seismic Design

- Installing the ILC and the associated detector(s) in Japan requires to take into account seismic hazard when designing the instruments
 - Systems should be designed not to suffer any damage from minor earthquake, which are likely to occur during the lifespan of the instruments
 - Moderate earthquake should result in minor damages only
 - Recovery from a major earthquake should be possible

Systems should be design to resist vertically applied load (gravity) but also horizontal seismic loading

- Seismic load is dynamic and can induce forces with the same order of magnitude or higher than gravity in the horizontal direction
- Even structures with high eigenfrequencies will have to withstand quasistatic loading

Any equipment, whether it is light or heavy, should have proper restrains, able to withstand loading in any direction

 Applies to subdetectors but also to ancillary systems: cables, services, electronic racks, tanks

Flexible vs. Rigid design

Two approaches: Rigid structure / Flexible structure

- Rigid design
 - Structure with high eigenfrequencies
 - Stiff connections able to withstand high stress levels
 - Limited displacements
- Flexible design
 - Structure with low eigenfrequencies
 - Large displacements due to flexible connections to avoid stress concentration
 - Favored approach for buildings

Rigid design probably better suited for a HEP detector: small displacements are desirable

- Detector needs to be compact, with limited clearance between sub-detectors
- Gaps are usually filled with cables and services

Design to Standards

- Standards provides useful information to evaluate the seismic actions and design seismic resistant structures
 - Mainly developed for buildings but cover also any equipment installed inside
- ISO 3010 Bases for Design of Structures Seismic Actions on Structures
- EUROCODE 8 Design of Structures for Earthquake Resistance
- National Standards or Building Codes

In Japan

- Reference is the Building Standard Law
- Non official documents but still acceptable: Recommendations from Architectural Institute of Japan (more frequently revised)
 - Released in 1993 updated in 2004
 - Specifications for T2K Neutrino experiment were based on AIJ 1993

Analysis Procedure

Response spectrum analysis for linear structures

- Define a site specific acceleration response spectrum
- Calculate the eigenfrequencies, enough to account for at least 90% of the participating mass of the structure
- Combine the modal contributions with CQC method
- Combine spatial components (X, Y, Z) with SRSS method

Time history method for non linear structures

 Requires sets of ground motion records to be used as load input

Response Spectrum

Preliminary Analysis Results

Model: very limited engineering input

- Central yoke ring with supporting feet, cryostat with coil
- Calorimeters as nodal mass
- ILD dimensions and weights
- CMS type design

Interfaces

- Coil attached to the cryostat with springs
- Radial connections between the cryostat and yoke at the front and the back
- Radial connections between the CAL mass and the inside shell of the cryostat

Loads

- Vacuum inside the cryostat
- Gravity
- Seismic load

Preliminary results / Static

- Static analysis to evaluate the effect of the gravity (vacuum inside cryostat included)
- Peak stress 142 MPa, but very local at the interface between the cryostat and the springs supporting the coil
 - Not really relevant, better, more detailed model is required
- Max displacement 4,7 mm, again at the interface between the coil and cryostat

Preliminary results / Eigen Modes

Global modes

Modes associated with the coil

O. Ferreira

RS Analysis Results

- With the acceleration response spectrum applied along the detector axis, the fundamental mode of the structure dominates: back and forth motion of the yoke ring
- The max displacement is around 23mm, which is quite high
- The peak stress is located in the feet. The level seems acceptable but the results need to be checked with a proper design and model
- Attaching the 3 rings together is probably the way to go to increase the overall stiffness and reduce the peak displacement

RS Analysis Results

- With the acceleration spectrum applied perpendicular to the detector axis, the displacement are significantly lower (less than 5 mm).
 - Due to its geometry, the yoke ring offers a good resistance to side loading
 - The effect is still not negligible
- With a rail type support, the effect is local: it affects only the calorimeters. The peak displacement increased to around 15 mm

Conclusion

- Seismic load is a major load case that needs to be taken into account when designing instruments to be installed in Japan
- Detectors and ancillary systems should be designed to be seismic resistant
- It is desirable to take into account those aspects as soon as possible in the design phase of the instruments
- Additional and stronger mechanical connections are needed to resist loading from various direction, which significantly impacts the assembly procedure of the detector