

ECAL End-Caps - structure and assembly

Denis Grondin

13.04.2012 ILD Regional Integration meeting @ LAL

Preliminary reminders

ECAL Fully equipped End-cap weight: ~ 25.5 T

Current structure of End-Caps

Modular structure 2 End-Caps Total of 24 modules - 4 x 3 modules each Max. Length. 2.5 m 2 quarters 3 modules in each quarter 1 of the 3 « standard » modules of each quarter Alveolar W-Carbon HR structure with

Fastening (rails) and Cooling system

Up to now, ECAL End-Cap is fastened on HCAL End-Cap inner face with rails

- Both Ecal End-Caps are to be fastened onto HCAL End-caps, hanging from it by rails
- •Each End-Cap will be divided in 4 quarters composed of 3 modules each (12 modules in total).
- •This subdivision is due to the fact that physics cracks are prevented with this geometry. Relative ease of implementation.
- •Cooling system to be install on rear face prior to insertion.
- •Symmetry of onboard services, dissymmetry of outboard ones.
- •The insertion tooling will have to allow the handling and positioning of ~6,5 t quarters in the alcoves of the cavern (Spaces for detector assembly/services).

4 solutions to move End-Caps down into the cavern

Assembly on surface

Assembly in the pit (favorite)

Full End-Cap on HCAL

Full End-Cap only wrong option/ final insertion

2x4 Quarters

2x12 Modules

Mechanical

- Interconnection done
- Alignment done
- Services connected(local)
- Modules fully equipped?
- Sub detectors (slabs) are fully commissioned?
- Once below they can be connected to the outboard services

Ex.: Lowering of one ATLAS muon small wheel into the cavern.

pre-assembly of modules on surface

Conception of specific handling and positioning tools

Rails and fastening system – Ex. Lifting beam of ALICE Sliding with rollers

pushed on glide strips

Platform supporting insertion tooling

Positioning of ECAL quarters in front of HCAL End-Cap

→ lateral space needed for sliding

insertion tooling with orientation tuning, alignment and fastening systems
Insertion of modules and/or quarters

Impact of alignment constraints on mounting Rails profile and position still to be validated !!!

Synoptic for integration

3 major options for integration

Assembly on surface
12 Modules by quarters

Assembly On HCAL

12 Modules

Assembly On HCAL End-Cap

4 Quarters

ECAL End-Caps: weight and volume

Total Weight 1 EC

Fully equipped with slabs

25426 kg

ECAL End-cap						Dimensio	ns				Rails	Services							
D=418	8	Nb of Volume / quarter			Volume / modules			Weight	Orientation	Weight	Weight								
			L (mm) / Y	I (mm) /x	H (mm) _{/z}	L (mm) / Y	I (mm) _{/ x}	H (mm) _{/z}	(kg)		(kg)	(kg)							
ECAL End-Cap (1)		12	4188	4188	185				25208		162	56							
1.1	Quarter 1				185				6302	Horizontal / left	57	13							
	Module 1.1	3	2492	1695		1828.85 (-563.4)	563.4	185	1585	Horizontal / left	8	4.5							
	Module 1.2	3	2492			2394.25 (-563.4)	563.4	185	2164	Horizontal / left	22	4.5							
	Module 1.3					2492.2	563.4	185	2553	Horizontal / left	27	4							
1.2	Quarter 2								6302	Vertical / down	24	15							
	Module 2.1	3	1695	2492	105	1828.85 (-563.4)	563.4	185	1585	Vertical / down	6	5							
	Module 2.2		3	3	3	3	1095	195 2492	185	2394.25 (-563.5)	563.4	185	2164	Vertical / down	9	5			
	Module 2.3					2492.2	563.4	185	2553	Vertical / down	9	5							
1.3	Quarter 3								6302	Horizontal / right	57	13							
	Module 3.1	3	3	3	3	3	2402	1605	105	1828.85 (-563.4)	563.4	185	1585	Horizontal / right	8	4.5			
	Module 3.2						2492	1695	185	2394.25 (-563.5)	563.4	185	2164	Horizontal / right	22	4.5			
	Module 3.3					2492.2	563.4	185	2553	Horizontal / right	27	4							
1.4	Quarter 4	3							6302	Vertical / up	24	15							
	Module 4.1		3	3	3			2		1605	2402	105	1828.85 (-563.4)	563.4	185	1585	Vertical / up	6	5
	Module 4.2					1695	2492	185	2394.25 (-563.5)	563.4	185	2164	Vertical / up	9	5				
	Module 4.3						2492.2	563.4	185	2553	Vertical / up	9	5						

 $M_{module} = L (mm) x I_{ext alveolus} (mm) x Nb colonne x 1.8184x10^{e-3} + M_{rails} + M_{services}$

 $M_{rails} \sim 0.005 \text{ kg/mm}$

M_{services} = cooling exchanger CU + piping Stainless Steel without cabling!

M_{external services} = 160 kg around EC / trough detectors (Stainless Steel)

Assembly phase (1)

Assembly of modules and quarters in the assembly hall

1. Modules equipment and test

to be refined

Task	Description / constraint	tooling	FTE	Time	Assembly area	Comment	
1	Handling of 1 (over 24) module.	Crane, table	2 T				
2	Insertion of 45 slabs per modules. 1 Slab =10 to 25 kg alignment within alveoli = 500 μm over 2.5 m		2 T				
3	Electrical connections up to LDA boards		2 T	1 week	20m²		
4	Cooling blocs (3) up to Module edge, over LDA up to main distribution line position		2 T				
5	Tests (electronic and signal)		2 T	1 week		To be done in parallel	
W. I							

Weight per module: ~1.6 t to 2.6 t

Same processes repeated 4 times per group of 3 modules (equipment of 1 End-cap)

Assembly phase (2)

Assembly of modules and quarters in the assembly hall

2. Quarters assembly on mounting support frame

to be refined

Task	Description / constraint	tooling	FTE	Time	Assembly area	Comment	
1	Handling of 3 modules. 1.6 t to 2.6 t on quarter support frame	crane, mounting jig and quarter support frame					
2	Mechanical interconnection of the modules to complete one quarter						
3	Cooling pipes connections over the 3 modules.	Mounting jig for cooling pipes	2 T	1 week	25m²		
4	Electrical connections up to quarter edge	Mounting jig for wiring					
5	alignment of rails with template	Mounting jig for rails				To be done in parallel	

Total weight : ~ 6,5 t / quarter

The assembly in quarter (2 ≠ configurations) will depend of:

- Integration process
- Maintenance scenario

ECAL General Cooling Integration

Specific need due to Leakless system

- Minimal height between cooling station (ground) and beam axis (h): 11 m
- Maximal distance between beam axis and cooling station (I): 30 m
- Congestion of tubing + measurement between cooling station and detector: 0.5m²
- -Separation wall between the cooling station and the pit (protection / magnetic field and radiation).
- Dimensions of the cooling station: length=> 3 m, width=> 2 m, height 2 m.

Overall thermalization foreseen

- Fluids Circulation + cabling
- => passages for pipes outwardly of the detector
- => Free space for connections
 - •Step1: onboard pipes & cables connection
 - Step2: pipes & cables connection trough detectors

Cooling lines for ECAL End-cap and Barrel

ECAL End-Cap Local Cooling Integration

Operation		Time / Unit	ETP	Installation of cooling pipes on modules/quarters – under rails	Time / EC	ETP
Integration on each of the 12 modulesfor cooling and services	Time Included in Assembly phase 1	1 day	2		6 days (surface)	2+2//
Quarter cooling integration	Time Included in Assembly phase 2	1 day	2		2 days	2+
	LET'S HAVE ONE MORE AND THEN WE'LL GO II				(cavern)	2 //

General cooling connection time to add ...

ECAL End-Cap General Cooling Integration

Task Description	FTE	TIME
Connection of leakless system to modules /quarters (pipes incoming by lower side of End-cap)	4	2 weeks
Full connection of 1 End-Cap: general EC integration + <u>piping trough detectors to cooling station</u>	4	1 month

ECAL Cooling Integration – Impact / HCAL

Space for pipes

Thermal flux inside a column of 1 module

Power on PCB = 0.205 W (barrel) / 0.356 W (End-cap) Boundary condition T = 23 °C

Results

Barrel: (1.5m)

Max T < 25,5 °C

 $\Delta T = 2.2$ °C

End Cap: (2.5m)

Max T = 29 °C

 $\Delta T = 6^{\circ}C$

Status: the detectors must be independents (thermal aspect).

Reality => low power (3Kw) spread over large surfaces associated with a small space between the detectors (3 cm) => influence of air via important conduction => flux between detectors certain

=> Real T° of detector impossible to predict without global modelling; so no possibility to know if our detector will cool or heat detectors around

Conclusion

Cooling front –end to remove the power of ECAL Low temperature gradient -> cooling system suitable for HCAL? → extra thermal insulation / HCAL ? (no flux exchange with other detectors)

Power: 30*0,356 = 10,68 W

ECAL End-Caps: integration area

Construction sites dedicated to end caps (installation & cabling): alcoves n° 2 & 3

- Assembly spaces in the alcoves: ok

The crane capacity in the alcoves (5t) is too small.
 The ECAL endcap quarters have a mass of <u>6,5t</u> and we need to be able to move them with a crane in the alcoves for insertion on HCAL End-Cap. 10t crane needed (EC+tooling)

- Alternative: cradle, but it has to be aligned (<u>raised</u>) to the proper height...

Needed space near detector for Integration & maintenance

Minimum width = 7 m/beam line for integration Storage area: 1 quarter=> 10 m² / 12 modules=> 50 m² Assembly area: 25 m² / quarter - 20 m² / module Insertion on HCAL End-Cap on each side: per full quarters

ECAL End-Caps: integration overview

< 5 months / EC

N°	Major Tasks Description for 1 End-Cap (Preliminary studies of the Ecal End-Cap assembly)	FTE	TIME	Ressource name
1	ECAL End-Cap Base Moving Unit / Base Moving Frame / Quarter Mounting Frame Insertion tool, transport , installation, alignment	4	~ 1 month	crane 1 , crane 2
2 //	Rails: fixing (female parts) on the rear face of the HCAL End-Caps: Positioning / Alignment / Checking	3	~ 1 month	Specific tooling TBD
3	Quarter 1 (3 modules) assembly in the assembly hall, fully equipped, tested and aligned	6 //	4 weeks	quarter support frame 1, crane 1
	3 Modules Equipment and test (assembly of 1 of the 3modules in the assembly hall)	2	1 week x 3	
	Tests (electronic and signal) of the 3 constitutive modules	2 //	1 week x 3	
	Quarter assembly on mounting support frame	2	1 week	
	Transportation of quarter in mountain site (or modules only / space available for tooling approach on both sides of detector in cavern)	4	2 days	
4 //	Quarter 2 (3 modules) assembly in the assembly hall, fully equipped, tested and aligned	6 //	4 weeks	quarter support frame 2, crane 1
5	Quarter 3 (3 modules) assembly in the assembly hall, fully equipped, tested and aligned	6 //	4 weeks	quarter support frame 1, crane 1
6 //	Quarter 4 (3 modules) assembly in the assembly hall, fully equipped, tested and aligned	6 //	4 weeks	quarter support frame 2, crane 1
7	Integration of 1 Ecal End-Cap on HCAL End-Cap	4	1 month	crane 1 , crane 2 quarter support & MF
	Insertion of 4 Ecal End-Cap <u>quarters</u> on HCAL End-Cap (quarter on its support frame) Positioning of the quarter on specific sliding tool / Pre-alignment operations / Insertion	4	2 days x 4	crane 1 , crane 2 quarter support & MF
8	1 ECAL End-Cap general cooling integration	4	2 weeks	
9	Remove ECAL End-Cap Mounting Frame / Base Moving Frame / Quarter Mounting Frame	4	1 week	crane 1 , crane 2

Main issue /mechanical quarter behavior during insertion on HCAL: <u>Quarter</u> Mounting Frame (To Be Studied) In case of cavern: this is done in assembly hall Mountain site (in the cavern)