QD0 Alignment in ILD

Karsten Buesser

12.04.2012

ILD Regional Integration Meeting

Alignment Requirements

- ILD detector axis:
- $\pm 1 \mathrm{~mm}, \pm 100 \mu \mathrm{rad}$
- laser reference system on platform or hall, positive indexing system on platform
- QDO magnets:
- before low current beam is allowed in:
- $\pm 50 \mu \mathrm{~m}, \pm 20 \mathrm{mrad}(\mathrm{roll}) \pm 1 \mathrm{mrad}$ (pitch, yaw)
- after beam-based alignment:
- Stability over $200 \mathrm{~ms}: \pm 200 \mathrm{~nm}, 0.1$ urad
- Vibration stability: less than 50 nm within 1 ms bunch train
- Alignment and positioning system on ILD
- Cam movers on QDOs
- Reference line: defined by QF1 magnets in the beam line

QD0 Alignment in ILD Lol

- MONALISA (Oxford)
- frequency scanning laser interferometer
- could provide necessary precision for QDOs
- could align ILD globally
- could link left and right QF1

CLIC Approach

- CLIC requirements are much tighter for QD0 magnets:
- alignment better than $\pm 10 \mu \mathrm{~m}$!
- CERN surveyor group is working on solutions for ILD@CLIC
- Klaus Sinram and myself met them at CERN during CFS BTR and disussed, if CLIC solution could be applied to ILD@ILC as well....

MDI area

Determination of the position of QDO w.r.t other components of the BDS (1)

Requirements:
\checkmark Position of the zero of QDO w.r.t ideal straight line of the 500 last meters of BDS: $\pm 10 \mu \mathrm{~m} \mathrm{rms}$ (including fiducialisation)
$\checkmark \quad$ Longitudinal relative position between QDO and QF1: $\pm 20 \mu \mathrm{~m} \mathrm{rms}$

Solutions:

\checkmark Main difference concerns the MRN network (due to lack of space):

- No overlapping of stretched wires in the last 250 m
- No HLS system needed for the modeling of the sag, which will be extrapolated on the last 250 m .

Determination of the position of QDO w.r.t other components of the BDS (2)

\checkmark Longitudinal monitoring of QDO w.r.t QF1: capacitive sensors coupled to each component measuring w.r.t targets of a common carbon bar

$\checkmark \quad$ Development of special mechanics and sensors to displace the stretching device when QDO is removed.

- Development of « opened» WPS sensors

- Fixed part of stretched wire will have to displaced remotely, radially (get out the WPS installed on QDO) and longitudinally (get out the support tube of QDO). Can not be removed as it gives an alignment reference for all the BDS components over the last 500 m .

Next steps

- Propose a design for these solutions and integrate them

Validate prototypes on dedicated mock-ups

Left side w.r.t right side

Requirements:

No survey galleries foreseen at ILC
Maybe not needed....
\checkmark Determination of left reference line w.r.t right reference line : within $\pm 0.1 \mathrm{~mm} r m s$
\checkmark Monitoring of left reference line w.r.t right reference line : within a few microns
\checkmark Monitoring of the position of left QDO / right QDO within $\pm 5 \mu \mathrm{~m} \mathrm{rms}$

Solutions:

\checkmark Determination of left reference line w.r.t right reference line \&monitoring of one BDS w.r.t other:
\rightarrow link stretched wires on both side by a common reference (as in the LHC). usina the survev galleries

Next steps

No further studies needed between 2012-2016

Left side w.r.t right side

Monitoring of the position of left QDO /right QDO: Concept

$\checkmark 4$ Reference Rings (RR) located at each extremity of QDO, supported from outer tube $\checkmark \quad 6$ radial spokes per RR

In two steps:
$\checkmark \quad$ A monitoring of the position of QDO w.r.t RR thanks to proximity sensors. (initial calibration of their position performed on a CMM)
\checkmark A transfer of the position of RR thanks to 6 spokes to alignment systems. By combination of redundant information, the position of the center of $4 R R$ is computed.

See next presentation by Harry van der Graaf
Next steps

- Validation of spokes design and alignment systems at NIKHEF (2011-2012)
- Validation of the concept on a mock-up at CERN (2012-2013)

Rasnik Lines-of Sight

1983: 4QD Red Alignment System Nikhef (Rasnik)

1993: CCD Rasnik

2003: RasDif: long distance

H. v.d. Graaf

Mechanical aspect of alignment LumiCal calorimeters

LumiCal calorimeters - space for laser beams

What about FCAL?

slides from Leszek Zawiejski

Carbon tube with glued carbon pipes (left) - less material, more stiffness, limited number of laser beams
Double layer carbon tube (right) less material, more stiffness, lot of space for many laser beams

Possible measurements of the relative distances to QDO in X, Y and Z directions

Comments

- We need to write something about the QD0 alignment in the DBD
- The Lol system was MONALISA: open technical questions; no-one is working on it anymore for ILD
- CLIC has much more stringent requirements and the CLIC group is working on an alignment system for ILD@CLIC
- Should we copy it?
- If yes, what do we still need to do:
- continue discussions with CLIC experts
- assign space in the detector for spokes and lines of sight for RASNIKs
- understand differences
- definition of magnetic axis at s/c quadrupoles different than at permanent quadrupoles (CLIC)
- Look for synergies (e.g. combine systems for QD0 alignment and LumiCal)

