### **A TPC for the Linear Collider** P. Colas on behalf of LCTPC



## 2 detector concepts : ILD and SiD

Both based on the 'particle flow' paradigm

- SiD: all-silicon
- ILD: TPC for the central tracking



Benchmark process: e+e- -> HZ, Z->µµ

#### **Requirements:**

Momentum resolution  $\delta(1/p_T) < 2.10^{-5}$  GeV/c with vertex constraint  $\delta(1/p_T) < 9.10^{-5}$  GeV/c TPC only (200 points with 100 µ resolution in R $\phi$ )

2-track separation: 2 mm in R $\phi$  and 6 mm in z in a high density background

Material budget: <5% X° in the barrel region, <25% X° in the endcap region

## All the R&D is gathered in LCTPC



## The EUDET test setup at DESY

- The EUDET (FP6) setup at DESY is operational since 2008
- Being upgraded within AIDA (FP7): autonomous magnet with internal He compressors





15/05/2012

### Beam tests at DESY : 5 technologies

- Laser-etched Double GEMs 100 μ thick ('asian GEMs')
- Micromegas with charge dispersion by resistive anode
- GEM + pixel readout
- InGrid (integrated Micromegas grid with pixel readout)
- Wet-etched triple GEMs ('European GEMs')



# Advantages of MPGDs

### **TPC with MPGDs**

- Small pitch of gas amplification regions (i.e. holes)
   => improves spatial resolution, reduction of E×B-effects
- No preference in direction (as with wires)
   => all 2 dim. readout geometries can be used
- No ion tail => very fast signal (O(10 ns))
   => good timing and double track resolution
- Direct e<sup>-</sup>-collection on pads
   => small transverse width
   => good double track resolution
- Ion back drift can be reduced significantly => continuous readout is possible
- Discharges probability can be reduced by using resistive electrodes or specific voltage setting
- Lower mechanical tension, MPGDs don't have to be stretched
   lower material budget in end plates

Performance may be further enhanced by highly pixelized readout.



### **Double GEM Modules**





GEM readout pad



**GEM Module** 

1.2×5.4 mm<sup>2</sup> pads - staggered 28 pad rows (176-192 pads/row) 5152 pads per module

#### $2\,\text{LCP-GEMs},\,100\,\mu\text{m}$ thick





### **Triple GEM Module**

3 standard CERN GEMs mounted on thin ceramic structure (bar size ~1 mm) to reduce dead space.

GEM is segmented into 4 parts to reduce energy stored in one sector. 1000 small pads (1.26 × 5.85 mm<sup>2</sup>)

First version tested last year: Detector could be operated in test beam, but a few shortcomings were identified.

Second version is being built with ~5000 pads.



## Charge spreading by resistive foil

Resistive coating on top of an insulator: Continuous RC network which spreads the charge: improves position sensitivity





M. Dixit, A. Rankin, NIM A 566 (2006) 28

Various resistive coatings have been tried: Carbon-loaded Kapton (CLK), 3 and 5 Mohm/square, resistive ink.

## Pad response

Relative fraction of 'charge' seen by the pad, vs x(pad)-x(track)



24 rows x 72 columns of 3 x 6.8 mm<sup>2</sup> pads

#### Z=20cm, 200 ns shaping



x(pad) - x(track) (mm)

### **Uniformity (B=1T data)**

MEAN RESIDUAL vs ROW number

Z-independent distortions

Distortions up to 50 microns for resistive ink Z=35cm (blue points)

Rms 7 microns for CLK film (red points)

-> select CLK



Z=5cm



Row number



Excellent uniformity up to the edge of the module, thanks to the 'bulk' technology.

#### **Data analysis results** (B = 0T & 1T)**Carbon-loaded kapton resistive foil**

Gas: Ar/CF4/Iso 95/3/2

$$\sigma = \sqrt{\sigma_0^2 + \frac{C_d^2 \cdot z}{N_{eff}}}$$

 $\sigma_0$ : the resolution at Z=0 N<sub>eff</sub> : the effective number of electrons  $C_d$ : diffusion constant







### N<sub>eff</sub> measurement with Micromegas

Averaging B=oT and B=1T data, modules 4, 5 and 3 (excluding ink module):

• N<sub>eff</sub> = 38.0±0.2(stat) (systematics difficult to assess)

• 
$$\sigma_{o} = 59 \pm 3 \,\mu m$$
  
 $N_{eff} = \frac{1}{\langle 1/N \rangle} \frac{\langle G \rangle^{2}}{\langle G^{2} \rangle}$ 

D. Arogancia et al., NIM A 602 (2009) 403

Note that 1/<1/N> = 47.1 from Heed for 5 Gev electrons on 6.84mm long pads.

Thus N<sub>eff</sub> has to be between 23.5 (for exponential gain fluctuations) and 47.1 if there are no gain fluctuations. 1/<1/N> = 34.9 for 5.4 mm pads (GEM case).

#### Dependence of resolution with peaking time



Optimum resolution for 500 ns peaking time -> try to lower resistivity to lower this peaking time (faster charge spreading)

15/05/2012

## Test in a high intensity $\pi$ beam



- Test at CERN (July 2010) at 180 kHz (5 x 2 cm<sup>2</sup> beam) showed no charging up and stable operation
- Peaking time of 200 ns is enough to obtain the best resolution -> 300 ns suffice to distinguish 2 tracks on the same pad



Time (in 40 ns bins)

### **Highly Pixelized Readout**

Bump bond pads for Si-pixel detectors serve as charge collection pads.



Timepix derived from Medipix-2 256 × 256 pixels of size 55 × 55 µm<sup>2</sup>

Each pixel can be set to:

- TOT ≈ integrated charge
- Time between hit and shutter end



15/05/2012

#### 7 module project - Micromegas electronic integration









### Integration and cooling

- New detector : new routing to adapt to new connectors, lower anode resistivity (3 MΩ/sq), new res. foil grounding on the edge of the PCB.
- New 300 points flat connectors
- New front end: keep naked AFTER chips and remove double diodes (count on resistive foil to protect against sparks)
- New Front End Mezzanine (FEMI)
- New backend ready for up to 12 modules
- New DAQ, 7-module ready and more compact format
- New trigger discriminator and logic (FPGA).

### Integrated electronics for 7-module project



<sup>15/05/2012</sup> 

#### First prototype of the electronics









Thermal studies. IR camera shows hot spots (regulators, ADC). T-probes on every component.
2-phase CO2 cooling under study (KEK, Nikhef)





### **Preliminary results : resolution (B=1T data)**

- Tends to confirm previous measurements (excluding lines with ASICs in bad contact).
- Optimum resolution now obtained for peaking time below 200 ns



### **New End Plate**

Material budget requirement for final end plate: 8% X<sub>o</sub>

→ Finite Element Analysis of final end plate Deflection of 220 µm for overpressure of 2.1 mbar Several materials and designs have been studied Strut space-frame design provides greatest strength-to-material.

Second end plate for LP designed and built (8.8 kg) Preliminary measurements of deflection are very close to requirements











#### 15/05/2012

# Ion disk and gating

### Preparation for future electronics

- Design and optimization work in progress for a new chip GdSP, evolution from SALTRO16:
  - 64 or 128 channels
  - 130 nm technology
  - Very low noise
  - Integrated ADC
  - 6 different power regions for power cycling
  - High level filtering (baseline subtraction, spike removal)

# CONCLUSIONS

- MPGDs have been shown to fulfill the requirements for the readout of a TPC for the LC.
- Integration work (electronics and cooling) is going on, and practical production issues are addressed for the pad readout.
- Pixel readout needs more development to gain in reliability and operability in large surfaces.