

Developing a program for 9mA studies shifts in Sept 2012

John Carwardine 5th June 2012

- It would be natural to develop a program that builds on what was achieved in February
 - Klystron saturation studies
 - Operation close to quench
- Need to consider that the Sept studies will be the last chance to collect results for the ILC TDR
 - Are there things missing from our accomplishments?

9mA studies (Feb 2012)

• Study topics

- How well can we flatten the individual cavity gradients
- How close to quench can we run the cavities with beam
- How close to saturation can we run the klystron
- How to ramp up to the maximum current, pulse length, and gradient without quenching

Machine conditions used

- 800us bunch-trains (2400 bunches)
- Average current over 800us: ~4.5mA (1.5nC/3MHz)
- Beam energy: 1GeV
- Energy gain on ACC67: 380MeV with 13 cavities
- Operating gradients on ACC67: 29MV/m average, four cavities running above 31MV/m

Key Results

Beam operation with 800us/4.5mA bunch trains, and...

- Gradients of all cavities in vector sum flat within +/-0.3%,
- All cavities in vector sum operating within 5-10% of quench
- First experience of 'high gradient operations management'
 - Quench detection / exception handling
 - Gradient 'soft limiter' to dynamically prevent quenching
 - Data-point of running machine into quench with 800us/4.5mA
- Beam operation with 800us/4.5mA bunch trains, and..
 - RF forward power within ~7% of klystron saturation
- Ramp-up from ~zero to 800us/4.5mA pulses without quenching
- Rapid recovery to 800us/4.5mA after trip ('crash test')

TD Phase R&D results (updated mid 2012): System Tests with Beam at FLASH

High beam power and long bunch-trains (Sept 2009)

Metric	ILC Goal	Achieved
Macro-pulse current	9mA (5.8mA)	9mA
Bunches per pulse	2400 x 3nC (3MHz)	1800 x 3nC 2400 x 2nC
Cavities operating at high gradients, close to quench	31.5MV/m +/-20%	4 cavities > 30MV/m

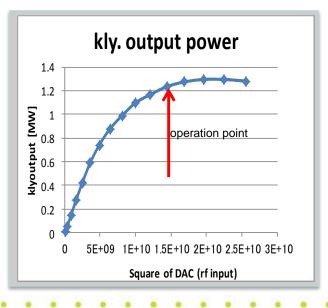
Gradient operating margins (updated following Feb 2012 studies)

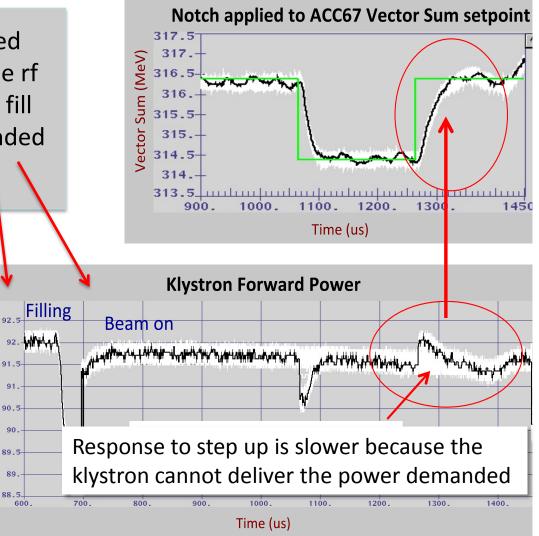
Metric	ILC Goal	Achieved
Cavity gradient flatness (all cavities in vector sum)	2% ∆V/V (800µs, 5.8mA) (800µs, 9mA)	
Gradient operating margin	All cavities operating within 3% of quench limits	Some cavities within ~5% of quench (800us, 4.5mA) First tests of operations strategies for gradients close to quench
Energy Stability	0.1% rms at 250GeV	<0.15% p-p (0.4ms) <0.02% rms (5Hz)

- Long bunch trains, heavy beam loading demonstration
 - 6mA / 800us demonstrated (TDR Baseline)
 - 9mA / 800us marginally achieved (luminosity upgrade)
- Vector Sum control of RF unit
 - Operation of RF units comprising 16 and 24 cavities
 - Intra- and inter-pulse stability better than 0.02%
- Operating gradients
 - Operation up to average of 29MV/m (24MV/m to 33MV/m)
 - Lorentz-force detuning compensation on all cavities simultaneously
- Pk/QI control for optimizing gradient profile
 - Demonstrated flat gradient solutions to +/-0.3%
 - ILC baseline has more knobs (power ratios), so easier

Check-list of TD Phase accomplishments

Klystron overhead

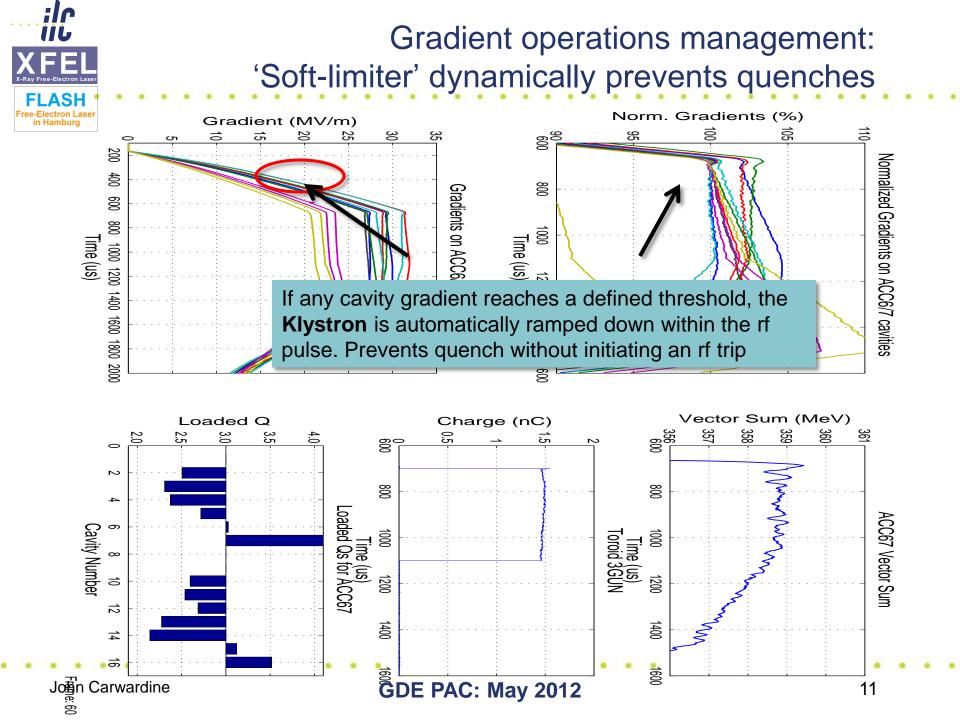

Strengthen these results


- First results: beam operation within 7% of saturation
- (Need to evaluate effect on energy stability)
- Operation close to quench
 - Several cavities within 5-10% of quench at 4.5mA, 800us
- Operation close to quench (operability)
 - Ramp-up to 4.5mA, 800us within 10% of quench demonstrated without quenching
 - Rapid recovery after quench
 - Quench detection / prevention with beam loading
- HOM coupler
 - Beam tests during high power 9mA/800us tests in 2009
 - Excellent agreement between model and measured data

9mA Studies: evaluating rf power overhead requirements (4.5mA/800us bunch trains)

- Klystron high voltage was reduced from 108KV to 86.5KV so that the rf output just saturated during the fill
- The required beam-on power ended up being ~7% below saturation

RF Power (dBm)



Klystron saturation studies at TDR low-power baseline parameters

- Klystron saturation studies
 - In Feb, we didn't have enough beam current to run in saturation during beam-on period
- In Sept, should perform klystron saturation studies at the new TDR 'low power' baseline parameters. Parameters relative to RDR...
 - Average current goes from 9mA to 6mA
 - QI goes from 3e6 to 5e6
 - Fill time goes from 600us to 900us
 - Pulse length goes from 1ms to 700us

- In Feb, we didn't go as far up in gradients as we could have done – we have further to go
- Gradient 'pre-limiter' was working only on ACC6 cavities, and we only barely got started on learning how to set up and use the pre-limiters
 - In Sept, we need pre-limiters on all the ACC6/7 cavities
 - Work on setting up the limiter and pre-limiter thresholds
- Another possible gradient related study (FEL not ILC)
 - Pushing for higher total linac energies at lower charge
 - Would need pre-limiters on ACC4/5 as well as ACC6/7
 - Wouldn't be able to detune cavities as we do for ILC study
 - How significant would this study be?

- Main study items
 - Klystron saturation studies at ILC/TDR low-power baseline
 - Push more cavities closer to quench
 - Other high priority items...?
- It would also be good to work on the exception handling, eg
 - Implement 'operations-quality' gradient flattening algorithm
 - Cross-linkages between automation tools integration
 - Need better exception handling, better uniformity

Preparation tasks – see Julien's slide from earlier