

9mA webex meeting 3rd July 2012

- Updates on FLASH activities
- 'Missing Measurements' for Sept 9mA program

- Context
 - ILC Global Design Effort formally coming the end
 - Technical Design Report is being written
 - Sept 9mA studies will be the last before formal completion of the ILC Global Design Effort
 - The most important ILC studies shows that an ILC can be built and actually work
- What should we try to accomplish in Sept...?

Beam operation with 800us/4.5mA bunch trains, and...

- Gradients of all cavities in vector sum flat within +/-0.3%,
- All cavities in vector sum operating within 5-10% of quench
- First experience of 'high gradient operations management'
 - Quench detection / exception handling
 - Gradient 'soft limiter' to dynamically prevent quenching
 - Data-point of running machine into quench with 800us/4.5mA
- Beam operation with 800us/4.5mA bunch trains, and...
 - RF forward power within ~7% of klystron saturation
- Ramp-up from ~zero to 800us/4.5mA pulses without quenching
- Rapid recovery ('crash test'): 800us/4.5mA -> trip -> 800us/4.5mA

High beam power and long bunch-trains (Sept 2009)

Metric	ILC Goal	Achieved
Macro-pulse current	9mA (5.8mA)	9mA
Bunches per pulse	2400 x 3nC (3MHz)	1800 x 3nC 2400 x 2nC
Cavities operating at high	31.5MV/m +/-20%	4 cavities > 30MV/m
gradients, close Already a compelling demonstration that we		
Gradient oper could run an ILC at the specified parameters		
Metric	ILC Goal	Achieved
Cavity gradient flatness (all cavities in vector sum)	2% ∆V/V (800µs, 5.8mA) (800µs, 9mA)	<0.3% Δ V/V (800 μ s, 4.5mA) First tests of automation for Pk/QI control
Gradient operating margin	All cavities operating within 3% of quench limits	Some cavities within ~5% of quench (800us, 4.5mA) First tests of operations strategies for gradients close to quench
Energy Stability	0.1% rms at 250GeV	<0.15% p-p (0.4ms) <0.02% rms (5Hz)

Pushing the parameters beyond what we already have achieved (A yet stronger demo)

- We're not quite there with the demo that we can operate within ILC gradient margins
 - Gradient margins themselves
 - Running at the ILC current (now 5.8mA)
 - Definitely want to spend some time understanding how to use the soft limiters wrt quench limits
 - Can we dynamically recover from marginally starting to quench
- We also not quite there demonstrating operation with minimal <u>klystron power overhead</u>
 - Only one datapoint so far
- Conclusion: demo context, we should push further with what we did in Feb
- What about any tests related to Klystron Cluster Scheme..?⁵

- What can we do now that we'd want to include in the 9mA journal article(s)...?
- (My view) we would want to show an understanding of the issues and limitations
 - Characterize operation close to gradient margins
 - Characterize operation close to power limits

GDE PAC: May 2012

John Carwardine

TTF/FLASH layout 9mA Experiment

GDE PAC: May 2012

- Questions (still) to be answered
 - How does stability change as we get closer to quench limits
 - Is there a knee or a hard threshold on how close we can run?

- ...

Conditions

 Reduce number of cavities in VS to get some number of cavities all very close to the quench limits (VS dominated by cavities close to quench)

- Questions (still) to be answered
 - How does stability change as we get closer to quench limits
 - Is there a knee or a hard threshold on how close we can run?
 - How much benefit do we get from klystron linearization?

Conditions

- Beam-on power as high as possible (above the fill power)
- Run klystron down till we can no longer reach the VS setpoint with the beam power
- Use Klystron linearization function in LLRF controller?

- What else...?
- Proposals for additional measurements to strengthen material for 9mA journal article(s)
-discussion