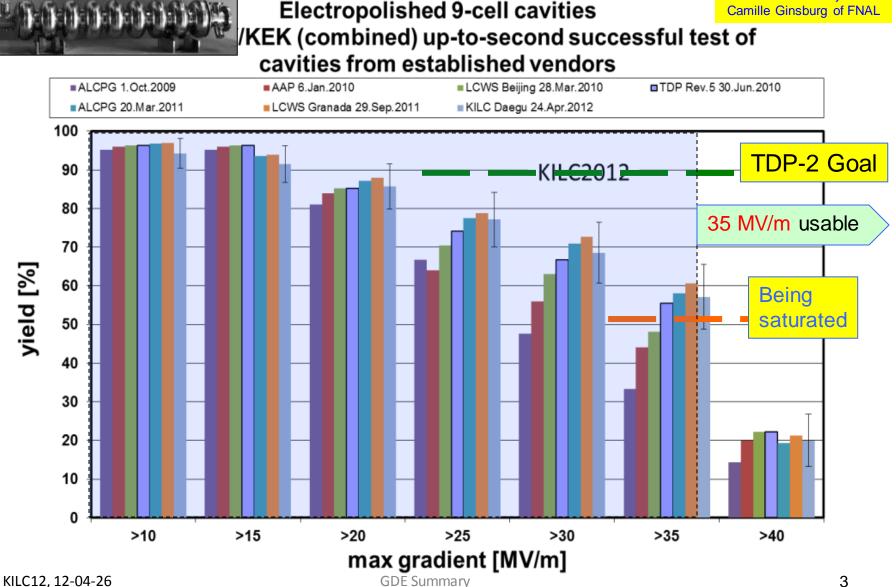
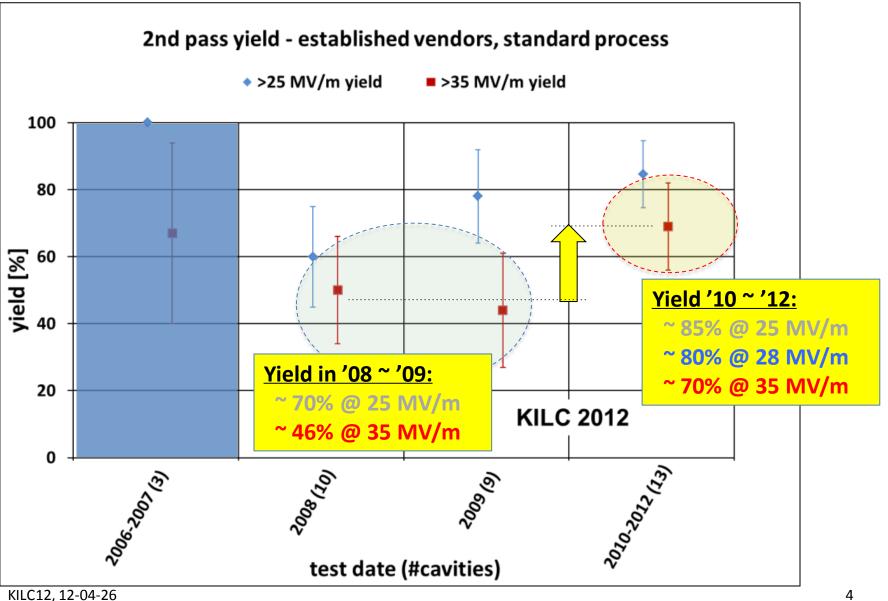
May 30, 2012

1. Reports from PMs

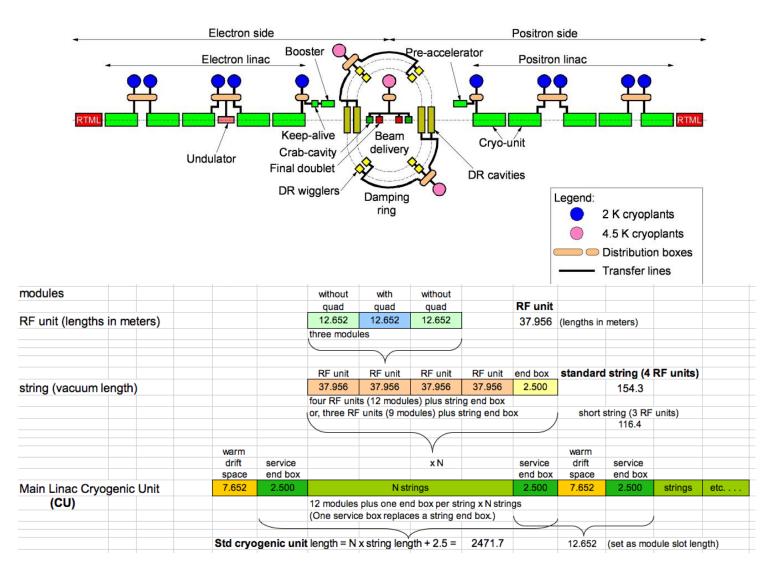

- GDE activity and meeting plan
- KILC-12 Summary: (A. Yamamoto)
- ILC-PAC and recommendations (M. Ross)
- 2. Reports from TA Group Leaders (if any?)
 - Cavity, Cavity Integration, Cryomodule, Cryogenics, HLRF, ML
- 3. Special Discussions on
 - Re-naming to identify better Flat-land or Mountainous conditions/parameters (N. Walker / A. Yamamoto)
 - Progress in TDR Drafting (J. Cawardine / N. Walker)

ML & SCRF Action/Meeting Plan (2012)

Month	Day	Place	Meeting
April	4 23-26	WebEx Korea	ML-SCRF Monthly meeting (Check homework) ACFA-LCWG : KILC-12 S1-Global report (draft) TDR drafts and cost-study reports, required
May	15-16 21-25	Fermilab New Orleans	ILC-PAC IPAC
	30	New Offeans	ML-SCRF Monthly meeting
Sept.	10-14	Telaviv	Linac-2012
Oct.	22-26 29-30	Texas Annaheim	LCWS IEEE-NS (LC event)
Nov.	5-6 15	JLab	TTC Final Draft of TDR
Dec.	13-14	KEK	ILC-PAC

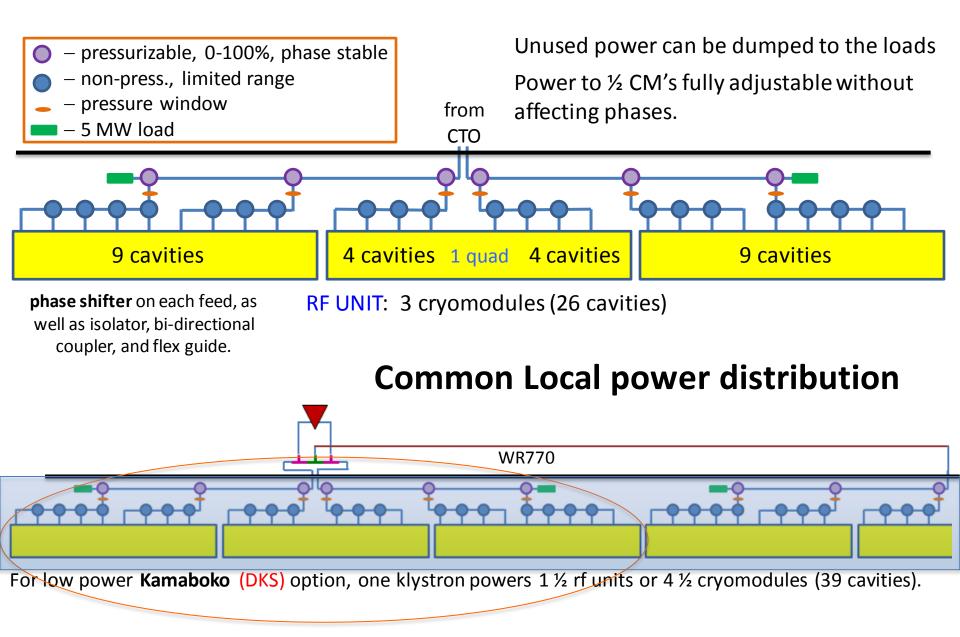

Progress Integrated in Cavity Gradient Yield

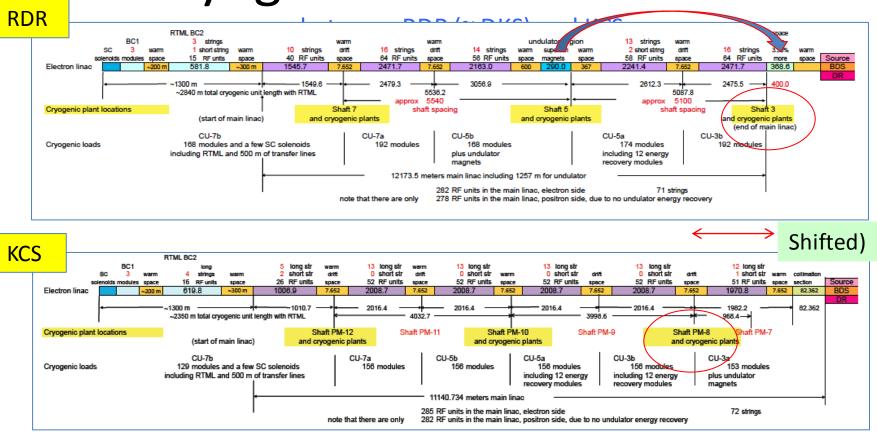
Updated, April., 24, 2012


Plot courtesv

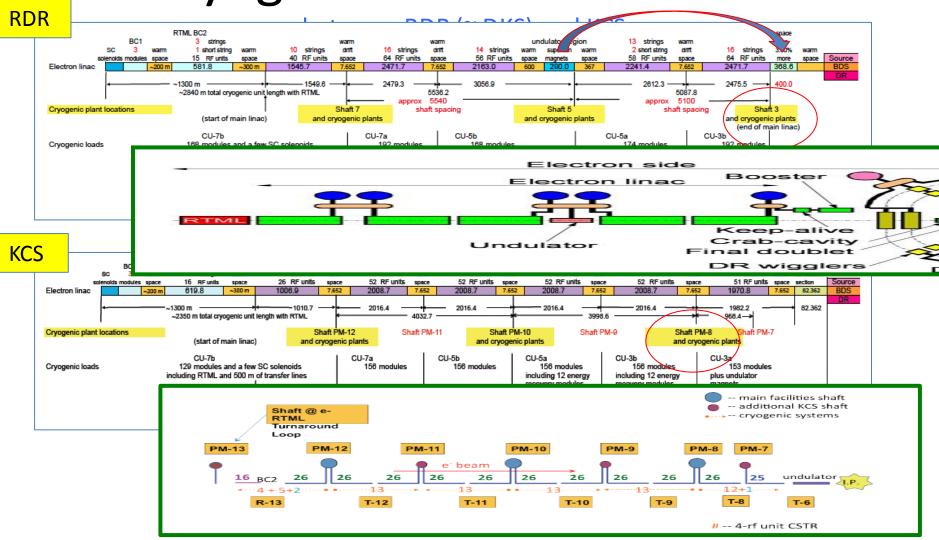
Yearly Progress in Cavity Gradient Yield as of April 24, 2012

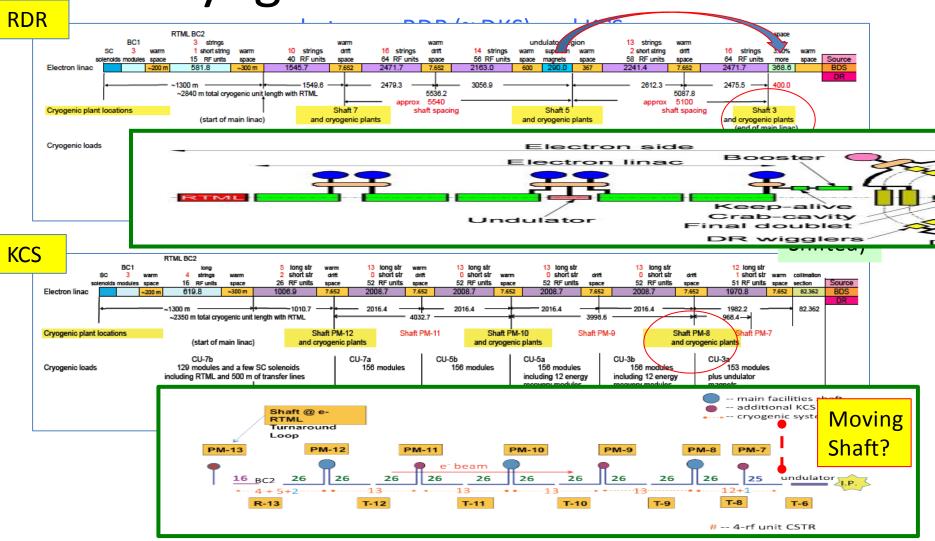
GDE Summary

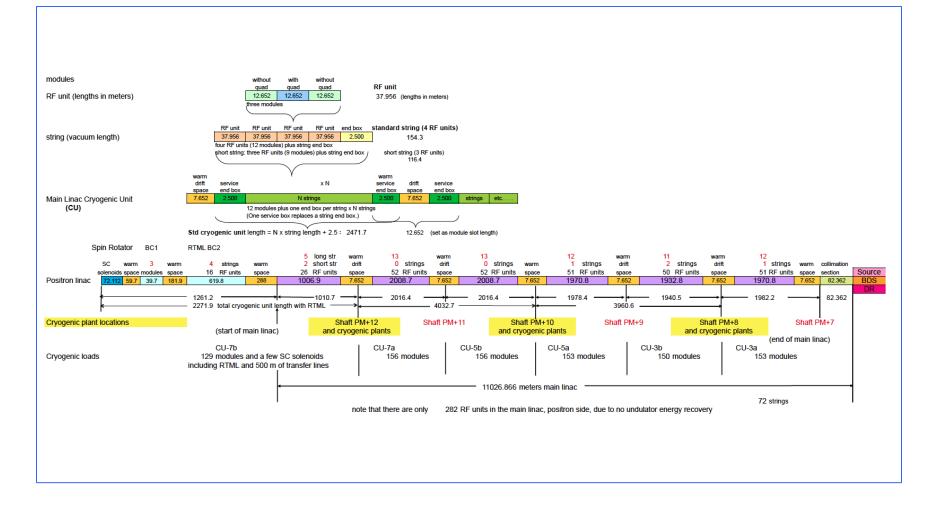

RDR cryogenic layout, for reference

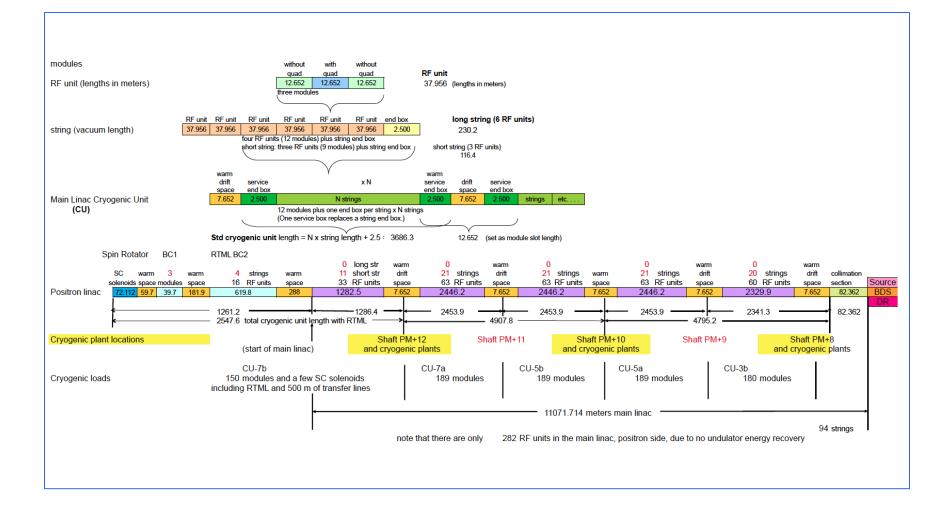

ILC GDE Cryo, Tom Peterson 1 Feb 2012

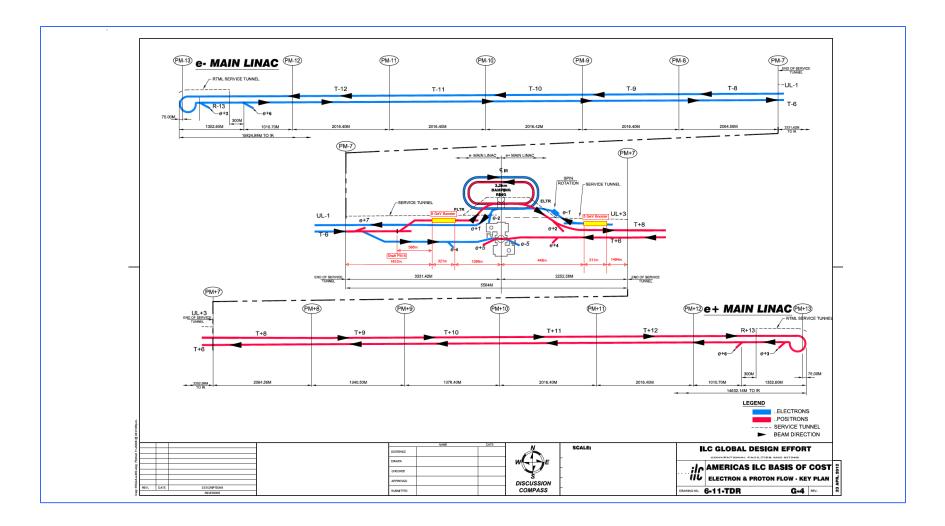
ILC cryo layout status

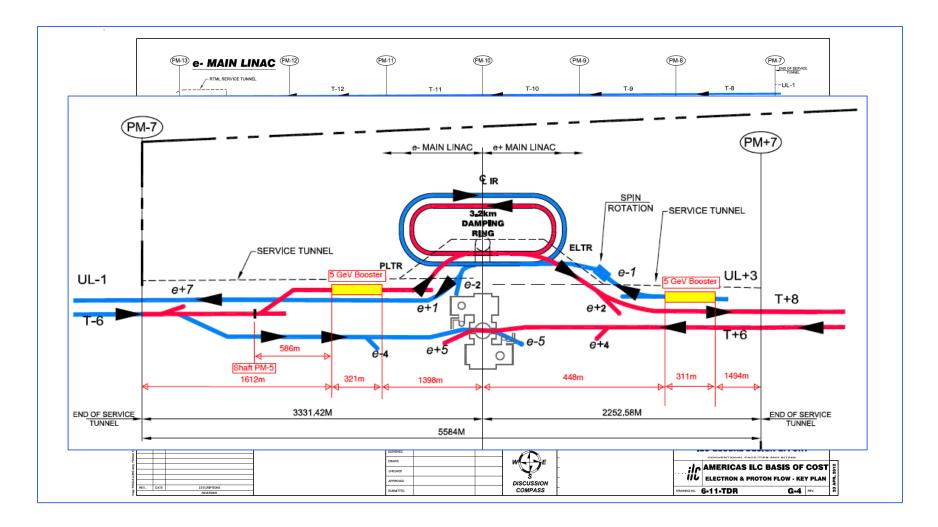

Streamlined PDS


Cryogenics Unit Difference


Cryogenics Unit Difference


Cryogenics Unit Difference


KCS-ML Cryogenics Unit Layout


DKS-ML Cryogenics Unit Layout

Central Region Layout

Central Region Layout-2

Cryogenics Dedicated Meeting

- Central region cryogenics layout and configuration to be discussed in a webex meeting
- To be held
 - 18:00, May 31 at Fermilab
 - 8:00, June 1, KEK
- Topic: ILC Central Region Cryogenics Date: Friday, June 1, 2012 Time: 8:00 am, Japan Time (Tokyo, GMT+09:00) Meeting Number: 752 751 028 Meeting Password: crcryo Host Key: 903881 (use this to reclaim host privileges) ------ To join the online meeting (Now from mobile devices!) ------ 1. Go to <u>https://ilc.webex.com/ilc/j.php?ED=165488187&UID=0&PW=NMTU1YmU2MGU2&RT=MiM00Q%3</u> D%3D 2. If requested, enter your name and email address. 3. If a password is required, enter the meeting password: crcryo 4. Click "Join".

Re-naming requested in TDR advised by N.W

	FLAT top. (ML KCS)	MOUNT top. (ML [DKS)		
	ML Unit	ML Unit	Three module unit CM9–CM8Q–CM9		
	RF-26 Unit	RF-39 Unit	CTC/Klystron distribution		
	Cryo short string	3xML unit (9 cryor	nodules)		
	Cryo long string	4xML unit (12 cryo	omodules)		
	Cryo unit				
Note the bu	unch compressors have	e the same configur	ration for both site flat and mountainou:		
BC1	BC1 3x C8Q1				
	1x RF-24 Unit				
BC2	16x ML	Units			
	16x RF−2	6 Units			

Summary

- ILC accelerator technology
 - SCRF cavity gradient progressing toward 35 MV/m,
 - Beam test facility functioning to demonstrate the ILC accelerator requirements,

Technical Design Report (TDR)

- Contents being settled w/ flat and mountainous cases,
- Draft being submitted by each author,
- Final draft due LCWS-12, Oct., 2012
- Further work beyond TDR
 - Advanced R&D for 1 TeV upgrade capability,
 - Further study to be readh for various energy operation

• Many thanks for the KILC12 organizer

PAC IC Summary and Recommendations

- 1. The PAC feels that the GDE work is progressing well, and will lead to a valuable, high quality, TDR; keeping up the momentum afterwards is recognized as being significantly more difficult.
- 2. The R&D still needed is in general aligned with the needs of the major labs, particularly DESY and Fermilab. A concern is that R&D on high-gradient cavities, particularly in the US, may not be supported at the ILC-needed level.
- Currently, the cavity yield at goal gradient is ~ 80%, rather than the desired 90%. The PAC encourages continued R&D on this after submission of the TDR.
- 4. The Committee is concerned that cavity tuners have not reached the ultra-high level of reliability required for the ILC; the PAC recommends more study and a focused program to achieve the necessary reliability.
- 5. The need to work on design for a mountainous topography site as well as a relatively flat site is being handled by the GDE as well as can be expected, and needs to continue to TDR completion.
- 6. It is important to maintain the DESY cavity database, and the Committee appreciates DESY's support of this.
- 7. The FLASH and CesrTA studies have been of very high quality, and are essential to the design of the ILC.
- 8. The PAC is impressed with the costing effort, which appears to be using all available information. Based upon LHC experience, the Committee advises not to use a single vendor for any large production order, even if the single-vendor price is lower than using multiple vendors.

GDE Summary

Publication and Review

First-draft sections	* 23 April *			
Complete edited draft	22 October (ILCWS 12)			
Final draft (for PAC)	15 November			
PAC review	15-16 December			

Formal publication at Lepton Photon Conf. (SF, June 2013) Expect international reviews: Both technical and cost (Q1-22 2013)

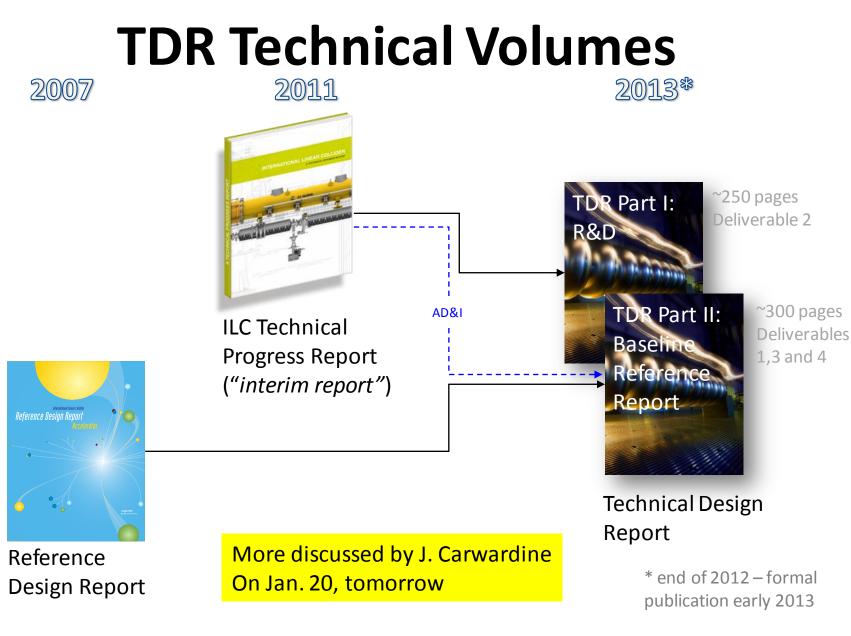
Summary of ML and SCRF BTR

(being uploaded to SCRF meeting Indico Agenda)

Summary of Decisions from Main-Linac and SCRF Baseline Technical Review (BTR)

held at	KEK, January 18 – 19, 2012
Reported by	GDE Project Managers (PMs):
- •	Akira Yamamoto, Marc Ross, and Nick Walker

Attendance:


C. Adolphsen, M. Akemoto, B. Barish, J. Carwardine, G. Dugan, E. Elsen, A. Enomoto,
B. Foster, S. Fukuda, R. Geng, H. Hayano, M. Hronek, E. Kako, S. Kato, J. Kerby,
N. Kobayashi, R. Kriske, K. Kubo, V. Kuchler, M. Kumada, T. Lackowski, B. List, T.
Matsumoto, S. Michizono, M. Miyahara, K. Nagai, C. Nantista, E. Paterson,
P. Pierini (webex), T. Peterson (webex), M. Ross, T. Saeki, M. Satoh, T. Shidara,
T. Shirakata, T. Tajima, R. Takahashi, T. Tauchi, N. Toge, K. Ueno, N. Walker,
S. Yamaguchi, A. Yamamoto, M. Yamanaka, K. Yokoya

Decision Summary:

The Main-Linac and SCRF Baseline Technical Review (BTR) was organized to discuss baseline design and technology for the Technical Design Report (TDR) and its associated cost-estimate.

Homework by KILC

ML	- Provide a complete ML lattice with 9+4Q4+9 cryomodule unit,
Integration	 Confirm requirement of energy overhead (1.4%) w/ additional ML length for operational availability (provide rationale)
	- Fix total numbers of CM including ML, RTML, e-source (# add. CMs to be fixed)
	- Q + corrector +BPM package design (w/ energy dependent design?)
	- Plan for full power upgrade at 500 GeV, and scenario up to 1 TeV
	(\rightarrow such as quad. configuration, FDFD up to 500 GeV, and FFDD at 1 TeV?
HLRF	- Required RF power overhead, more detail (in KCS and RDR)
	- Cost saving of PDS, Klystron, Marx Generator etc
	- Catalogue local power distribution variants and conceptual designs
	- Estimate waveguide losses and heat loads
CM and Cryogenics	- Confirm CM slot length to be fixed: 12,652 mm in RDR, and it need to be
	reflected to the current ILC-CM drawing which has currently 12,644 mm
	(11794+850) in FNAL-CM4.
	- Asses the need for accessibility and maintenance of active components (tuner
	motors)
	- Cryo-string length, additional length of Cold-box for phase-separation, to adapt
	new RDR-like RF unit and/or tilting tunnel and effect on add. Total main linac
	length.
Cavity Integration	- Cavity-slot length to be well established (to be 1326.7 mm)
	- Feasibility of magnetic shield inside LHe tank at central region and outside
	at inter-connect.
Cavity Gradient	- Update fabrication process and recipe; re-definition of production yield
	(documentation)
Coupler processing	 Determine specifications for peak power processing
	 Evaluate solution for tunnel in-situ processing

Ch	Sect Heading	Pages	Primary
•	PART I: ILC R&D in the Technical Design Phase	280	
1	Introduction	10	<u>Walker</u>
2	Evolution of the ILC design in the Technical Design Pha	10	<u>Walker</u>
3	Superconducting RF technology	95	<u>Yamomoto</u>
4	Beam Test Facilities	70	[Editor]
5	Accelerator Systems R&D	70	[Editor]
6	Conventional Facilities and Siting Studies	10	<u>Kuckler</u>
7	Post-TDR R&D	10	<u>Ross</u>
8	Summary	5	Walker

Logistics

There are too many chapters to spend 3hrs on each, so we will need to prioritize

	Part II: The ILC Baseline Reference	338	
1	Introduction and overview	5	Paterson
2	General parameters and layout	15	[Editor]
3	SCRF Main Linacs	50	Yamomoto
4	Electron source	10	Sheppard
5	Positron source	20	<u>Gai</u>
6	Damping Rings	25	<u>Guiducci</u>
7	RTML	20	<u>Solyak</u>
8	Beam Delivery System and MDI	25	<u>Seryi</u>
9	Global Technical Systems	26	
10	Commissioning, Operations, and Availability	15	<u>Ross</u>
11	Conventional Facilities and Siting	42	<u>Kuchler</u>
12	Upgrade options	20	[Editor]
13	Scope of post-TDR engineeting (tech. risk assessment)	20	<u>Ross</u>
14	Project Implementation Planning	20	<u>Harrison</u>
15	Cost and Schedule	20	<u>Dugan</u>
16	Summary	5	Walker

Which authors are going to the meeting?

TDR Writing Status reported by J. K

ILC TDR - Issues

ilc

#	Project	Subject	Content Author	Editing status	% Done	Promise	Status rep date	Comment
TDR1	- Beam Test Facilities (6)				Done	duto	duto	
224	TDR1 - Beam Test Facilities (6)	Section: ATF2	Toshiaki Tauchi	Not received	0	07/31/2012	05/22/2012	1
206	TDR1 - Beam Test Facilities (6)	Section: Quantum Beam experiment	Hitoshi Hayano	Not received	0			<u> </u>
205	TDR1 - Beam Test Facilities (6)	Section: Fermilab/NML beam facility	Mike Church	Received by Forge Upload	0			
204	TDR1 - Beam Test Facilities (6)	Section: CesrTA and electron-cloud R&D		Not received	0			
203	TDR1 - Beam Test Facilities (6)	Section: FLASH '9mA' Experiment	John Carwardine	Not received	30	06/08/2012	05/29/2012	<u> </u>
202	TDR1 - Beam Test Facilities (6)	Section: Overview	Marc Ross	Not received	0			<u> </u>
TDR1	- SCRF (8)		•	•		1	•	
201	TDR1 - SCRF (8)	Section: R&D towards mass-production and design for manufacture	Jim Kerby	With Editors	0			
200	TDR1 - SCRF (8)	Section: RF power generation and distribution	Shigeki Fukuda	Not received	0			
199	TDR1 - SCRF (8)	Section: Cryomodule, cryogenic thermal balance, and quadrupole R&D	Paolo Pierini	Received (partial/draft)	70		05/22/2012	
198	TDR1 - SCRF (8)	Section: The S1-Global experiment	Hitoshi Hayano	Not received	0			
197	TDR1 - SCRF (8)	Section: Cavity Integration	Hitoshi Hayano	Not received	0			
196	TDR1 - SCRF (8)	Section: High-gradient SCRF cavity R&D and the yield evaluation	Rongli Geng	Not received	0			
194	TDR1 - SCRF (8)	Section: Development of worldwide SCRF R&D infrastructure	Jim Kerby	With Editors	0			
117	TDR1 - SCRF (8)	Section: Overview	Akira Yamamoto	Not received	0			
TDR2	- ML layout for a flat topography	(3)	•	•			•	
107	TDR2 - ML layout for a flat topography (3)	Section: Low-Level RF for Klystron cluster scheme	John Carwardine	Not received	40	06/08/2012	05/29/2012	
104	TDR2 - ML layout for a flat topography (3)	Section: Klystron cluster scheme RF power distribution system	Christopher Nantista	Received by Forge Upload	0			
101	TDR2 - ML layout for a flat topography (3)	Section: Layout	Chris Adolphsen	Not received	0		05/29/2012	Scope of this vs Chapter-2 needs discussion
TDR2	- ML layout for a mountain topog	graphy (3)						
106	TDR2 - ML layout for a mountain topography (3)	Section: Low-Level RF for Distributed klystron scheme	John Carwardine	Not received	40	06/08/2012	05/29/2012	
105	TDR2 - ML layout for a mountain topography (3)	Section: Distributed klystron scheme RF power distribution system	Shigeki Fukuda	Received by Forge Upload	0			

05/29/2012

1/2

SERF WebEx Meeting