Analyse Muons 100 GeV run 714408

Yannis, Max et Jean

Create "Events"

Start from LCIO record
Convert it to root file with all hits Look for Time clusters
Define the threshold of nb of hits in a time slot above which we have an event. Is 15 now
Look for maxima above threshold Define an event : All hits in +- 5Time slots around Max = good hits Create a 2nd root summary file CaloEvents, containing all good hits X,Y,Z, deltaT, HitL,M,H etc...

Timing Cut

Working from now on only on CaloEvents root files

Tmax - Time All Event Hits
Take +-1 RPC, +- 2 uMegas slots around T Max, eliminate rest of the hits

Look for MIPs

Density $=\mathrm{Nb}$ of Hits / Nb of Layers

- Select MIPs
- Nb of Hit Layers within the first 10
- Nb of Hit Layers within last 10
- Penetrating MIP = 6 Layers / 10

Forward \&\& 6 Layers / 10 Backward

Penetrating MIPs

- Select Penetrating MIPs
- Fit a straight line in X and Y
- Fit works Chi2 for Npoints-2 deg of freedom

Average Residuals per
 layer

Efficiency

μ Megas Efficiency in a chip Region

Chamber's nb from 0 to 49

Layer 48

Layer 49

To compute efficiencies a fiducial volume is defined:

- $2<$ Ndamier < 94 in both directions x, y
- $\mathrm{x}, \mathrm{y} 2 \mathrm{~cm}$ far from ASUS limits

RPC and μ Megas chip efficiency

Multiplicity

Nb of Hits in $7 \times 7 \mathrm{~cm}$ around track

Conclusion

Globally the Calorimeter works very well
Fine details have to be understood the next weeks Hadronic shower analysis to be done.

Layer 50μ Megas A noisy chip appears after $\sim 9 k$ events.

X versus Y Map RPC Layer 33 1DIF has problems

K

WATCH OUT for problems

