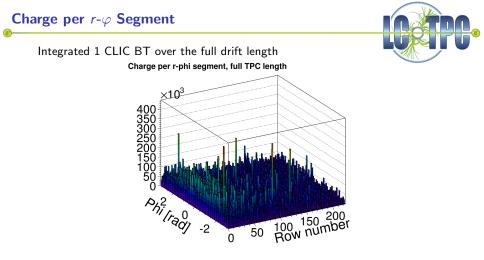
Space Charge in the CLIC TPC

Martin Killenberg

07. July 2012

2


Based on Keisuke's ioneffects programme

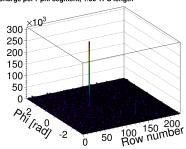
- Use parameterised, factorisable ion density $\rho = \rho_z \rho_r$
- No φ dependency
- Calculate *E_r* by solving Green's function (see Keisuke's talk from March)
- "Track" electrons along z for constant r
- Calculate $\Delta r \varphi$ for fix E_z , B and $\omega \tau$

Ion densities available for

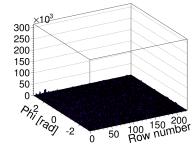
- 1 BT ILC background (fit by D. Arai on A. Vogel's data) $\rho = p_0/(r p_1)^2$, no z dependence
- 5 BT ILC background (1 second = max. ion drift time)
- 1 BT CLIC background
- 50 BT CLIC background (1 second = max. ion drift time)

• Not flat in φ

Distribution has spikes

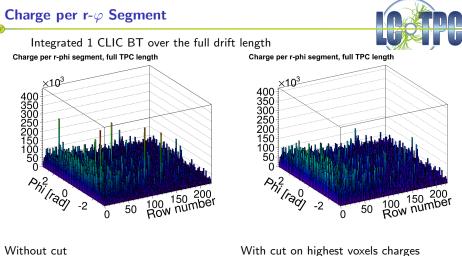

æ

Charge per r- φ Segment and z Slice


Charge per r-phi segment, 1/50 TPC length

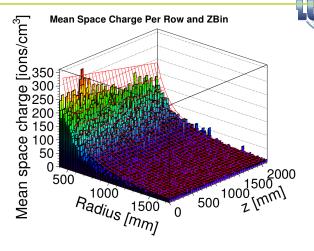
Slice 14

Slice 15



Charge per r-phi segment, 1/50 TPC length

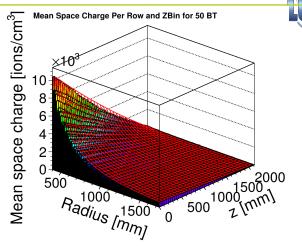
- Local depositions in 1 voxel only
- MC Truth list shows they originate from pions
- Is this plausible?
- Pion interaction length in Ar \approx 900 m.
- 4500 pions in the $\gamma\gamma \rightarrow$ hadrons background (1 BT)
- Low angle (\approx 2 m track length)
- \Rightarrow 9000 pion-TPC-meters = 10 interaction lengths
 - Fits with the number of peaks in the histogram



- Not flat in φ
- Distribution has spikes

- Huge spikes are gone
- Still a bit bumpy
- Good enough to assume φ independence

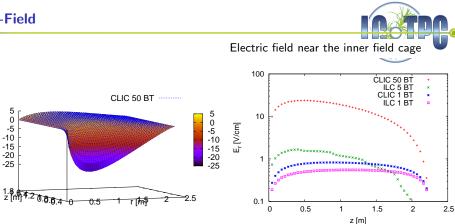
э


Charge Fit in r-z (1 CLIC BT)

- Slight dependence on z
- Parametrisation $(p_0 + p_1 z)/(r p_2)^2$

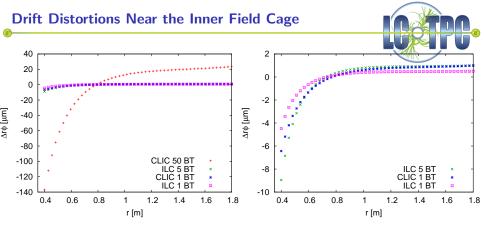
- Charge up to 350 ions/cm³
- A bit more than 1 ILC BT

Charge Fit in r-z (50 CLIC BT)


- Strong dependence on z
- Parametrisation $(p_0 + p_1 z + p_2 z^2)/(r p_3)^2$

I used 50 times the same bunch train.

- Very high charge near the cathode
- Charge up to 10,000 ions/cm³


E-Field

Er [V/cm]

- E_r is largest near the inner field cage
- Er changes sign towards outer field cage

- E_r for 50 BT at CLIC is up to 25 V/cm
- E_z component will not be negligible
- Effects on drift velocity and diffusion
- Simulations have to be adapted to include these effects!

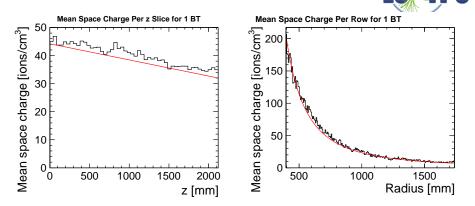
- Distortions for ILC are small
 - 5 µm for 1 BT
 - 9 μm for 5 BT
- \bullet Distortions for 1 BT CLIC are OK (7 $\mu m)$
- $\bullet\,$ Distortions for 50 BT CLIC not negligible: 137 μm need to be corrected for
- Local distortions from large charge depositions not included yet

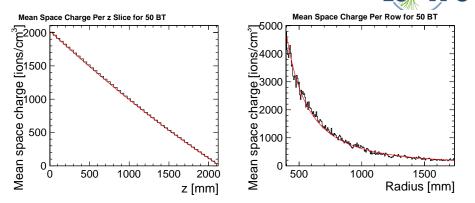
Summary

50 BT of CLIC background

- $\bullet\,$ Large local charge depositions from $\gamma\gamma \rightarrow {\rm hadrons}\,$
- Distribution without spikes parameterisable
- Huge electric field distortions $O(10 \% E_z)$
 - Change in drift velocity and diffusion
- Distortions in $r arphi \, \mathcal{O}(140 \ \mu m)$ not deadly, but have to be corrected for

Next steps


- Local charges need full 3D calculations (Thorsten Krautscheid)
- Calculate also changes in E_z and E_{φ}
- Implement variation in v_{drift} and diffusion


Backup

2

<ロ> <四> <四> <日> <日> <日</p>

The fit is not a fit to the 1D histogram. It is the analytical integral of the 2D parametrisation, while the histogram is the projection of the 2D histogram.

The fit is not a fit to the 1D histogram. It is the analytical integral of the 2D parametrisation, while the histogram is the projection of the 2D histogram.

