

Plans for Timepix module

Towards a 100 chip module

Michael Lupberger

University of Bonn

LCTPC Meeting 05.02.2012

Status Timepix+SRS Readout

- Most of the functionality of the Muros+Pixelman system is implemented
 - Set matrix and DACs (FSR)
 - Read out matrix
 - Reset, start/stop measurement, measure with certain shutter length
 - DAC scan in Software + osci (no ADC jet)
 - Threshold equalisation
- Setup with one chip in operation

Outlook

- Far goal 1: LCTPC module with InGrids
 - Maybe later...
- Far goal 2: LCTPC module with DESY GEM and as many Timepix chips as possible (115 chips, staggerd chips), consisting of 16 submodules (different sizes, most of them octoboards)
 - Still to many problems to solve for a first try...

Next steps

 Near goal: LCTPC module with 3x3 submodules, each octoboards, staggered boards

Why stagger chips?

Steps to reach near goal

- 1 chip readout by SRS using HDMI cables, electronics as for 9 octoboard
 - Think about signalling
 - Think about power supply
 → use power regulators on intermediate board, see if current (~8A/octoboard) can come through HDMI as in SRS+APV25

→ use I2C, CMOS → LVDS

- Think about cooling → water for the beginning
- Design intermediate board and adapter card for SRS
- Construct mechanics (frame hosting octoboards, including cooling)
 - Test alignment of submodules
 - Test cooling → first put resistors instead of chips

Steps to reach near goal

1 chip readout by SRS using HDMI cables, electronics as for 9 octoboard

Done

- Think about signalling

→ use I2C, CM

- Think about cooling → water for the beginning
- Design interregulate board and adapter card for SRS
- Construct mechanics (frame hosting octoboards, including cooling)
 - Test alignment of submodules
 - Test cooling → first put resistors instead of chips

Endplate mechanics

Backup: HDMI Cables

- 2 cables per ocotoboard
- 6 of 8 differential pairs for clock, data and enable (in and out)
- 2 other for shutter (in and out)
- 2 DDC on one cable: I2C
- 2 DDC on other cable: LVDS converted ANIN_N04
- 8 lines left for polatrity, Tpules_enable, power, ground

14 lines + 5 shields per cable

- 3 diff signals
- 1 diff clock
- 2 DDC (I2C SDA and SCL)
- 1 CEC
- 1 "Hot Plug detect"
- 15V
- 1 not specified

Backup: signalling

- Floorplan for signalling
 - 4 Octoboards on 1 FEC
 - LVDS/CMOS drivers missing in sketch
 - DAC out → ADC → I2C
 - Ext_DAC_in controlled by I2C DAC
 - M0,M1,TReset from I2C
 - Global part: Shutter, Polarity, Tpules_enable for whole interm. board
 - Shutter also possible to inject on intermediate board
 - Should go in both directions
 - Test pulse generation on intermediate board (levels ANIN_A1,ANIN_A2 from I2C DAC, switch ANIN_N04 from CMOS)

