Importance of single cell test especially with exchanging cavities and Possibility for Asia to contribute S0/S1

RDB Meeting at FNAL June 1, 2006 T. Higo

KEK general stance

- We establish recipe with single-cell study (2006)
 - Aim at higher gradient, even higher than 35MV/m.
 - Learn basic requirements to establish BCD.
- We try to prove 35MV/m gradient in 9-cell cavities. (2006)
 - 4 TESLA-like cavities and 2 ICHIRO cavities are installed into STF-I as scheduled and with gradient reached then.
 - 2 ICHIRO cavities are reserved without scheduled installation and used for proving higher gradient.
- We help develop capacity from PAL, IHEP,
- We understand we need to promote industry capability
 - How, when,??

R&D strategy for ILC high gradient

- We establish the Recipe by Single cell cavities(2006)
 - New recipe will become in reality through recent pilot study
 - 7 existing IS cavities are reset by CBP and evaluate yield till next TTC in Sep.
 - We make 6 new IS cavities and test the recipe.
 - We propose to evaluate **DESY-made cavities**.
 - We promote test at US by sending IS cavities.
- We demonstrate high gradient in 9-cell cavity (2006-2007)
 - Based on recipe obtained by single-cell study, we further improve the gradient with reserved two ICHIRO cavities. (2006)
 - Two more LL cavities, with improved ICHIRO design, are made and tested. (2006)
- International collaboration (2007-2009)
 - More cavities are made and investigate yield.
 - Pursue industrialization in practice.

(IS : ICHIRO single-cell cavity)

Pilot study for 45MV/m by single cell cavity

		IS#2	IS#3	IS#4	IS#5	IS#6	IS#7	RE2
ILC WG5-Asia Recipe	Eacc,max	36.9	31.4	45.1	44.2	48.8	28.3	
	Qo@Emax	1.53E10	8.66E9	9.07E9	5.38e9	9.56E9	1.94e9	
+re-HPR+No Bake(48hr)	Eacc,max	37.6	32.7	43.7	22.0	51.4	29.9	33.8
	Qo@Emax	1.42E10	7.27E9	6.07E9	8.28E9	7.77E9	1.10E10	1.23E10
+HF rinsing+No Bake, No Q-disease!	Eacc,max	37.1	36.7	50.4	Troubled	50.2	30.0	
	Qo@Emax	1.64E10	1.43E10	9.97E10		3.90E9	3.33E9	
+CP(10)+HPR+Bake(48)	Eacc,max					41.0	40.5	22.3
	Qo@Emax					6.65E9	5.57E9	3.19E9
+EP(3, closed, new acid)+ HPR+Bake(48)	Eacc,max	41.6	40.3	41.1				
	Qo@Emax	1.00E10	1.28E10	1.17E10				
+EP(20+3, closed, new acid)+ HPR+Bake(48)	Eacc,max	47.1		47.8				
	Qo@Emax	1.06E10		7.81E9				
+EP(20+3, closed, new acid)+ HF rinsing+HPR+Bake(48)	Eacc,max		44.7	May 9			43.9	
	Qo@Emax		0.98E10	May 9			1.17E10	
+EP(30+3, closed, conc. HF) +HPR+Bake(0-48hr) Q-slope!	Eacc,max		28.0(B=48)			27.6(B=48)	30.6(B=0)	
	Qo@Emax		2.14E9			3.07E9	3.17E9	
HPR@KEK TOC=16, Bacteria=80-200	Eacc,max	26.9						
	Qo@Emax	4.39E9						

Q-slope is related to oxidation of the surface.

HF rich EP acid promotes Q-slope? Or shorten the Baking term?

9-cell Cavity R&D Capacity in KEK and K. Saito 060524 An Example of Cavity production for H.G. Study

Cavity Fabrication	KEK in-house	Industry	Cavity Cost	Manpower	
(HPVC based) [Cavities/year]	10	40 (20)	7M¥ KEK in-house ∼20M¥ Industry fab.	3	
Cavity Preparation [Cavities/year] Turn around	STF(one cavity/month) 10 - 20	STF+Nomura 20 - 30		3	
Preparation re-work	STF (one cavity/week) 20-30	STF+Nomura 50-60		2	
Vertical Test [Times/year]	ARE(one test/week) 40	ARE+STF 80		2	
For Establish LL					
1 4+4	$\begin{array}{c} PAL \\ \downarrow \\ +[1] \\ for HG study \end{array}$	(24+4) for STF-II	For ILCTA?		
05	06 07	08	09	- D	

A proposal of international single-cell cavity study

- In order to hold common idea of required treatment to reach the BCD performance
 - We need quick systematic evaluation of treatments.
 - Single-cell cavities are suited for it.
 - Exchange single-cell cavities among laboratories helps mutual confirmation, in addition to information exchange.
 - Single-cell is the step before and in parallel with 9-cell cavity development.

A proposal of international 9-cell cavity study

- Exchange of 9-cell cavities, for example;
 - To apply different treatment such as CBP on some XFEL cavities
 - Asian-made LL cavities will be tested with treatment by DESY
 - Exchange cavities once proven in gradient to be evaluated at other facilities and with other treatments
- KEK can contribute more
 - Increasingly from 2007
 - Depend on international recommendation

Conclusion

- KEK should establish recipe with single-cell study.
 - Several ~10 single cell cavities are used fully.
 - Pursue under international collaboration.
- KEK try to prove high gradient in 9-cell.
 - Firstly install 4-6 cavities in STF-I as scheduled with gradient reached then. This gives rough idea of yield of KEK then.
 - We use 2 ICHIRO cavities and make two new cavities to pursue higher gradient.
 - We want to make ~10 cavities in 2007, before STF-II. We hope it will be realized if international R&D recommendation pushes.
- We think it important to exchange cavities to mutually evaluate to get confidence in recipe.
 - Both single-cell cavities and 9-cell cavities.
- KEK helps PAL and IHEP develop production and test facility.

Addendum

ILC High Gradient R&Dに向けた開発戦略(案)

```
K. Saito 060524
```

- 1) Establish of the Recipe by Single cell cavities(2006)
 - この間のpilot studyによりnew recipeの目処あり。
 - 7個のIS cavityの表面をCBPでresetして、 next TTC meetingまでにそのrecipeでのyieldを確認 (2006のR&D項目)。
 - 6個のnew IS cavitiesで再確認(2006のR&D項目)。
 - DESYのsingle cell cavitiesでの確認(Cavityの交換?)。
 - USでのsingle cell でのR&Dの推進(IS Cavityの貸与?)。
- 2) Demonstration of the high gradient by 9-cell cavities (2006)
 - 2台のICHIRO cavityを使い、
 単セルrecipeを9-cellにfeedback(2006R&D変更)。
 - ●LL 9-cell shapeの改良 (2006R&D項目)。

3) International Study of Yield Statistics by 9-cell cavities T2Higo 2007-2009

KEK cavity fabrication capacity

KEK in-house: ICHIRO 4 cavities 2005 Jan-May, one cavity/month 10 cavities(without HPVC)/year

MHI Production: STF 35MV/m 4 cavities
2005 Aug-Dec, 1-1.5 cavities/month
40 cavities (without HPVC)/year
20 cavities (with HPVC)/year

Capacity of preparation

- CBP: 4 10 days (depends on EBW), Capa. 2 cavities
- Light etching(BCP) + HPR : One day
- Annealing 750°C : 3 days, Capa. 2 cavities
- Pre-tuning: 3 days, Capa. 2 cavities
- EP 80 micron + HPR : 3 days
- Cavity Assembly: 3hr
- Baking + Vac. Evacuation : 3 days

Total: 17.2 – 23.2 days

Capacity of Vertical Test

- Evacuation @ Test stand : 2 3 days
- Vertical test: 2 days
- Warm up: 2 days

One test/one week

Vertical test stand at Asia

- Present
 - KEK AR-east
 - one 9-cell dewar
 - one single-cell dewar
 - One vacant pit
- 2007~
 - KEK STF one 9-cell (not yet budgeted)
 - PAL SC facility ??
 - IHEP China ??