Importance of single cell test

 especially with exchanging cavities and
Possibility for Asia to contribute S0/S1

RDB Meeting at FNAL
June 1, 2006
T. Higo

KEK general stance

- We establish recipe with single-cell study (2006)
- Aim at higher gradient, even higher than 35MV/m.
- Learn basic requirements to establish BCD.
- We try to prove 35MV/m gradient in 9-cell cavities. (2006)
- 4 TESLA-like cavities and 2 ICHIRO cavities are installed into STFI as scheduled and with gradient reached then.
- 2 ICHIRO cavities are reserved without scheduled installation and used for proving higher gradient.
- We help develop capacity from PAL, IHEP,
- We understand we need to promote industry capability
- How, when,??

R\&D strategy for ILC high gradient

- We establish the Recipe by Single cell cavities(2006)
- New recipe will become in reality through recent pilot study
- 7 existing IS cavities are reset by CBP and evaluate yield till next TTC in Sep.
- We make 6 new IS cavities and test the recipe.
- We propose to evaluate DESY-made cavities.
- We promote test at US by sending IS cavities.
- We demonstrate high gradient in 9-cell cavity (2006-2007)
- Based on recipe obtained by single-cell study, we further improve the gradient with reserved two ICHIRO cavities. (2006)
- Two more LL cavities, with improved ICHIRO design, are made and tested. (2006)
- International collaboration (2007-2009)
- More cavities are made and investigate yield.
- Pursue industrialization in practice.
(IS : ICHIRO single-cell cavity)

Pilot study for 45MV/m by single cell cavitity

		IS\#2	IS\#3	IS\#4	IS\#5	IS\#6	IS\#7	RE2
ILC WG5-Asia Recipe	Eacc, max	36.9	31.4	45.1	44.2	48.8	28.3	
	Qo@Emax	1.53E10	8.66E9	9.07E9	5.38 e 9	9.56E9	1.94 e 9	
+re-HPR+No Bake(48hr)	Eacc,max	37.6	32.7	43.7	22.0	51.4	29.9	33.8
	Qo@Emax	1.42 E 10	7.27E9	6.07E9	8.28E9	7.77E9	1.10 E 10	1.23 E 10
+HF rinsing+No Bake, No Q-disease!	Eacc,max	37.1	36.7	50.4	Troubled	50.2	30.0	
	Qo@Emax	1.64 E 10	1.43 E 10	9.97E10		3.90E9	3.33E9	
+CP(10)+HPR+Bake(48)	Eacc,max					41.0	40.5	22.3
	Qo@Emax					6.65E9	5.57E9	3.19E9
+EP(3, closed, new acid)+ HPR+Bake(48)	Eacc,max	41.6	40.3	41.1				
	Qo@Emax	1.00 E 10	1.28 E 10	1.17 E 10				
$+E P(20+3$, closed, new acid)+ HPR+Bake(48)	Eacc,max	47.1		47.8				
	Qo@Emax	1.06 E 10		$7.81 \mathrm{E9}$				
$+E P(20+3$, closed, new acid)+ HF rinsing+HPR+Bake(48)	Eacc,max		44.7	May 9			43.9	
	Qo@Emax		0.98E10	May 9			1.17 E 10	
+EP(30+3, closed, conc. HF) +HPR+Bake(0-48hr) Q-slope!	Eacc,max		28.0(B=48)			27.6(B=48)	30.6(B=0)	
	Qo@Emax		2.14E9			3.07E9	3.17E9	
HPR@KEK TOC=16, Bacteria=80-200	Eacc,max	26.9						
	Qo@Emax	4.39E9						

Q-slope is related to oxidation of the surface. HF rich EP acid promotes Q-slope? Or shorten the Baking term?

9-cell Cavity R\&D Capacity in KEK and

An Example of Cavity production for H.G. Study

Cavity Fabrication (HPVC based) [Cavities/year]	10	KEK in-house	Industry	Cavity Cost
Cavity Preparation [Cavities/year] Turn around	STF(one cavity/month) $10-20$	STF+Nomura $20-30$	$7 \mathrm{M} ¥$ KEK in-house $\sim 20 \mathrm{M} ¥$ Industry fab.	3
Preparation re-work	STF (one cavity/week) $20-30$	STF+Nomura $50-60$		3
Vertical Test [Times/year]	ARE(one test/week) 40	ARE+STF 80		2

Shape decision

A proposal of
 international single-cell cavity study

- In order to hold common idea of required treatment to reach the BCD performance
- We need quick systematic evaluation of treatments.
- Single-cell cavities are suited for it.
- Exchange single-cell cavities among laboratories helps mutual confirmation, in addition to information exchange.
- Single-cell is the step before and in parallel with 9-cell cavity development.

A proposal of international 9-cell cavity study

- Exchange of 9-cell cavities, for example;
- To apply different treatment such as CBP on some XFEL cavities
- Asian-made LL cavities will be tested with treatment by DESY
- Exchange cavities once proven in gradient to be evaluated at other facilities and with other treatments
- KEK can contribute more
- Increasingly from 2007
- Depend on international recommendation

Conclusion

- KEK should establish recipe with single-cell study.
- Several $\mathbf{~ 1 0 ~ s i n g l e ~ c e l l ~ c a v i t i e s ~ a r e ~ u s e d ~ f u l l y . ~}$
- Pursue under international collaboration.
- KEK try to prove high gradient in 9-cell.
- Firstly install 4-6 cavities in STF-I as scheduled with gradient reached then. This gives rough idea of yield of KEK then.
- We use 2 ICHIRO cavities and make two new cavities to pursue higher gradient.
- We want to make ~ 10 cavities in 2007, before STF-II. We hope it will be realized if international R\&D recommendation pushes.
- We think it important to exchange cavities to mutually evaluate to get confidence in recipe.
- Both single-cell cavities and 9-cell cavities.
- KEK helps PAL and IHEP develop production and test facility.

Addendum

ILC High Gradient R\＆Dに向けた開発戦略（案）

1）Establish of the Recipe by Single cell cavities（2006）
この間のpilot studyによりnew recipeの目処あり。
－7個のIS cavityの表面をCBPでresetして， next TTC meetingまでにそのrecipeでのyieldを確認 （2006のR\＆D項目）。

- 6個のnew IS cavitiesで再確認（2006のR\＆D項目）。
- DESYのsingle cell cavitiesでの確認（Cavityの交換？）。
- USでのsingle cell でのR\＆Dの推進（IS Cavityの貸与？）。

2）Demonstration of the high gradient by 9 －cell cavities（2006）
－2台のICHIRO cavityを使い，単セルrecipeを9－cellにfeedback（2006R\＆D変更）。
－LL 9－cell shapeの改良（2006R\＆D項目）。
3）International Study of Yield Statistics by 9－cell cavities ${ }^{\top}$ 20087－2009

KEK cavity fabrication capacity

KEK in-house: ICHIRO 4 cavities
2005 Jan-May, one cavity/month
10 cavities(without HPVC)/year

MHI Production: STF 35MV/m 4 cavities 2005 Aug-Dec, 1-1.5 cavities/month 40 cavities (without HPVC)/year 20 cavities (with HPVC)/year

Capacity of preparation

- CBP : 4-10 days (depends on EBW), Capa. 2 cavities
- Light etching(BCP) + HPR : One day
- Annealing $750^{\circ} \mathrm{C}: 3$ days, Capa. 2 cavities
- Pre-tuning: 3 days, Capa. 2 cavities
- EP 80 micron + HPR: 3 days
- Cavity Assembly: 3hr
- Baking + Vac. Evacuation : 3 days

Total: 17.2 - 23.2 days

Capacity of Vertical Test

- Evacuation @ Test stand : 2 - 3 days
- Vertical test: 2 days
- Warm up: 2 days

One test/one week

Vertical test stand at Asia

- Present
- KEK AR-east
- one 9-cell dewar
- one single-cell dewar
- One vacant pit
- 2007~
- KEK STF one 9-cell (not yet budgeted)
- PAL SC facility ??
- IHEP China ??

