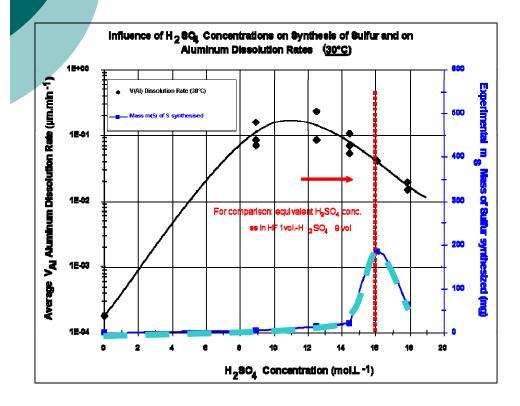

From R&D to industrial set-up

R&D issues

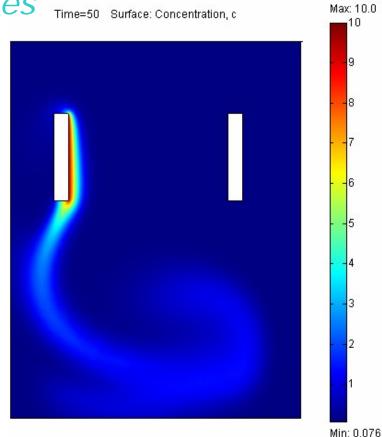
- Process R&D
 - o Mechanism issues
 - Contamination issues
 - o Modeling
- Monocell Set-up
- Tumbling
- o Specifications
- o 9 Cell EP R&D facility @ ANL

ILC Board meeting June 1st 2006


Mechanism issues

- \circ => find out the Fluorine role
 - Is it the limiting species ? (porous film => no !)
 - Does it improve Nb⁵⁺ solubility ?
- \circ => find out a way to maintain fluorine content
 - NaF, low temperature...
- \circ => find out a way to monitor F⁻
 - Chromatography (diluted samples, all ions)
 - NMR (samples, no dilution, only F- or H+)
 - Abs Spectroscopy UV/Vis (effective on HF + H₂SO₄, but bubbles issues)
 - Resistivity measurement (*expensive*, but effective on HF + H₂SO₄, bubbles issues)
 - ISE (very inexpensive !, dilution or works only with free F⁻)

S forms at low [F-] and high [H_2SO_4] *S* is not soluble in H_2O



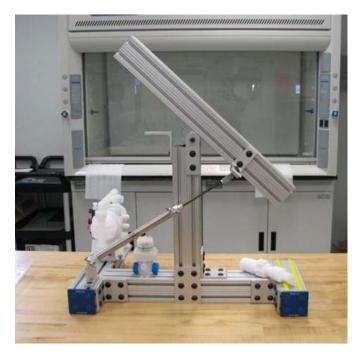
- \circ => Improve rinsing !
 - Ethanol, organic solvents
 - Surfactant solution + US
- o Keep [F-] high
- o Lower [H₂SO₄]
 - viscosity/ acidity issues
- Other viscous buffer...

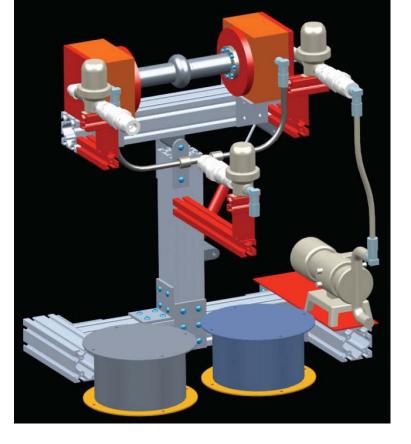
Modeling issues

Viscous layer is mandatory for uniform etching inside cavities

- => find out what conditions favor viscous layer
- => find out what disturbs viscous layer
- => play with parameters like
 viscosity, composition, EXm reactions
- => getting into more complex situation : geometry, motion, hydrodynamics
- In the end : correlate with experimental facts

[F. Eozenou]


=> Intuitions !


What can be done quickly on samples

- o Correlate degradation and actual [F-] ?
- Variation of [Nb⁵⁺]/ [F⁻] in EP soln => mechanism limitation
- o Add F⁻ Salt (NaF)
 - viscosity/plateau
 - lifetime
- o Other viscous buffer
- o ≠ temperatures
- R&D on samples is necessary:
 - low cost.
 - saves a lot of time and money

EP R&D: monocell facility

- Small scale cavity set-up (3.9 GHz)
- R&D program with small vol. of acids
 - Intermediate between samples & 9-cells
 - Low cost + Safety
 - High turnover

ILC Board meeting June 1st 2006

Tumbling

- Mechanical "pre"-polishing => saves EP etching
- Inexpensive, ± automated
- o Issues
 - Iris/equator etching rate
 - H free process
 - Time consuming

EP Facilitiy : specifications

- Common work (ANL, FNAL, LANL, Cornell...): M. Kelly, C. Boffo, T. Tajima, P. Bauer, K. Shepard, C. Cooper, H.
 Padamsee, H. Carter
- Based on input from SMTF-TTC meetings
- Should evolve with R&D results
- Should be a basis for industrial engineering studies (end of 06/beg.07)
- Companies are now being contacted

Parameter	Unit	Range
Voltage	V	0-20
Current density	mA/cm ²	30-150
Temperature	°C	25-35
Temperature stability	°C	+/- 1
Acid flow	1/min	0-25
Cavity rotation	Rpm	0+-5
Nb content	g/l	< 10 (<6)
HF content	%	> ? (>1 Mol/l ?)
N ₂ flow	scfm l/min	1-3 10-30