# Multi-knobs for Ver5 Optics

Toshiyuki OKUGI, KEK 2012 / 10 / 5 ATF2 weekly meeting

### Linear knob

#### Linear knobs are calculated by changing the positions of FF sexts.

 $\Delta X$  for FFsext -> change the alphaX, alphaY, etaX, etaX'

- △X for SF6FF, SF5FF, SD4FF, SF1FF, SD0FF are orthogonal to make AX, AY, EX, EPX knobs .
- •One other free parameter is adjusted to make a large dynamic range of knobs.

 $\Delta Y$  for FFsext -> change the etaY, etaY', <x'y>

- △Y for SF6FF, SD4FF, SF1FF, SD0FF are orthogonal to make EY, EPY, Coup2 knobs .
- •Since the strength of SF5FF is small, SF5FF is not use for the correction.
- •One other free parameter is adjusted to make a large dynamic range of knobs.

### **Parameters for Linear Knobs**

AX,AY — Beam waists are moved by 1cm.

EX,EY — Dispersions are changed by 1mm.

EPX, EPY — Angular dispersions are changed by 1mrad.

Coup2  $- \Delta < x'y > / sqrt(\varepsilon x * \varepsilon y) = 1$ 

|       |   | AX      | AY      | EX      | EPX     | EY      | EPY    | Coup2  |
|-------|---|---------|---------|---------|---------|---------|--------|--------|
| SF6FF | Χ | +142um  | +348um  | +250um  | - 268um |         |        |        |
| SFOFF | Υ |         |         |         |         | - 51um  | +148um | +24um  |
| CEEE  | Χ | - 127um | +300um  | - 301um | +295um  |         |        |        |
| SF5FF | Υ |         |         |         |         | 0       | 0      | 0      |
| CDAFF | Χ | +9um    | - 679um | - 298um | +542um  |         |        |        |
| SD4FF | Υ |         |         |         |         | - 290um | - 61um | +124um |
| CF1FF | Χ | - 65um  | - 334um | +714um  | -1108um |         |        |        |
| SF1FF | Υ |         |         |         |         | - 96um  | +329um | - 1um  |
| CDOFF | Χ | - 94um  | - 808um | +890um  | -1666um |         |        |        |
| SD0FF | Υ |         |         |         |         | +350um  | +119um | +99um  |

The dynamic range of EX knob is about 50% to that of Glen's 2.5x1 optics. The dynamic range of AY knob is about 75% to that of Glen's 2.5x1 optics.

Since the strength of SF5FF is small, the contribution of other sexts are large.

### Normal Sextupole Field Correction Knobs

#### Sextupole field correction knobs by changing the strength of FF sexts.

#### Sextupole field

$$B_y = \frac{B^{(2)}}{2} (x^2 - y^2)$$

$$B_X = B^{(2)} X y$$

$$\Delta X_{IP} = \frac{R_{12} K_2}{2} \left( \Delta x^2 + 2 \eta \Delta x \frac{\Delta p}{p} + \eta^2 \frac{\Delta p^2}{p^2} - \Delta y^2 \right)$$

$$X_{22} \qquad X_{26} \qquad X_{66} \qquad X_{44}$$

$$ignore (effect is small)$$

$$\Delta Y_{IP} = R_{12} K_2 \left( \Delta x \Delta y + \eta \Delta y \frac{\Delta p}{p} \right)$$

$$Y_{24} \qquad Y_{46}$$

△K2 for SF6FF, SF5FF, SD4FF, SF1FF, SD0FF are orthogonal to make X22, X26, X66, Y24, Y46 knobs

#### Parameters for Normal Sextupole Knobs

|     | SF6FF   | SF5FF    | SD4FF    | SF1FF    | SD0FF    |
|-----|---------|----------|----------|----------|----------|
| Y24 | +0.002A | - 0.008A | - 0.097A | +0.004A  | +0.016A  |
| Y46 | +0.008A | - 0.032A | - 0.390A | - 0.022A | - 0.103A |

Modified currents are listed on the table.

### Skew Sextupole Field Correction Knobs

#### Skew sextupole field

$$B_x = \frac{B_s^{(2)}}{2} (x^2 - y^2)$$

$$\Delta y_{IP} = \frac{R_{34} K_{25}}{2} \left( \Delta x^2 + 2 \eta \Delta x \frac{\Delta p}{p} + \eta^2 \frac{\Delta p^2}{p^2} - \Delta y^2 \right)$$

$$Y_{22} Y_{26} Y_{66} Y_{44}$$

#### We will put 4 skew sextupole correctors



SK1FF; sensitive to Y22, Y26, Y66

SK2FF; sensitive to Y44

SK3FF; sensitive to Y22, Y26, Y66

SK4FF; sensitive to Y22

Y22, Y26, Y66, Y44 knobs are calculated by the combination of SK1FF, SK2FF, SK3FF, SK4FF.

## Parameters for Skew Sextupoles

With All SKs

|  |       | Y22       | Y26       | Y66       | Y44       |
|--|-------|-----------|-----------|-----------|-----------|
|  | SK1FF | +0.0006A  | - 0.1200A | +0.4581A  | +0.0365A  |
|  | SK2FF | +0.0674A  | +0.0229A  | - 0.1180A | +4.4102A  |
|  | SK3FF | - 0.0210A | - 1.7221A | - 3.4060A | - 1.4333A |
|  | SK4FF | +0.6831A  | - 1.2748A | - 5.3300A | - 0.9083A |

No SK1FF (No Y66 knob)

|  |       | Y22       | Y26       | Y66 | Y44       |
|--|-------|-----------|-----------|-----|-----------|
|  | SK1FF | +0.0000A  | +0.0000A  | N/A | +0.0000A  |
|  | SK2FF | +0.0676A  | - 0.0080A | N/A | +4.4974A  |
|  | SK3FF | - 0.0163A | - 2.6141A | N/A | - 1.1824A |
|  | SK4FF | +0.6904A  | - 2.6706A | N/A | - 0.4922A |

No SK3FF (No Y66 knob)

|       | Y22       | Y26       | Y66 | Y44       |
|-------|-----------|-----------|-----|-----------|
| SK1FF | - 0.0022A | - 0.3516A | N/A | - 0.1590A |
| SK2FF | +0.0682A  | +0.0826A  | N/A | +4.5384A  |
| SK3FF | +0.0000A  | +0.0000A  | N/A | +0.0000A  |
| SK4FF | +0.7159A  | +1.4202A  | N/A | +1.3581A  |

### **Tolerances for Sextupole Field Errors**



Small tolerance of skew 6pole for "NO SK1FF" -> "No SK3FF" at the 2012 October run.

QD4AFF

QD2BFF

QF3FF

QD2AFF

Q30FF

QD4BFF

QF5BFF

MAGNET NAME

QD6FF

QF5AFF

QD10BFF

**QD10AFF** 

QF9BFF

QF9AFF

Q)8FF

QF7FF

### Horizontal Emittance Dependance



Enough tolerable for 4nm horizontal emittance beam.

### Summary

I presented the parameters of linear and sextupole knobs for Ver5 optics.

#### For Linear Knobs

The dynamic range of EX knob is about 50% to that of Glen's 2.5x1 optics.

The dynamic Range of AY knob is about 75% to that of Glen's 2.5x1 optics.

#### For Sextupole Knobs

We will start the 2012 October operation with 3 SK magnets.

Since tolerance of skew 6pole for "NO SK3FF" is comparable to that for "ALL SKs", I recommend not to be wired to "SK3FF" at the 2012 October run.

The correction with SK1FF, SK2FF and SK4FF is enough tolerable for 4nm horizontal emittance beam.