Simulation Studies of a Total Absorption Dual Readout Calorimeter

Andrea Delgado

Electromagnetic fraction & hadronic response to Cherenkov and Scintillation Light

We calculate the *electromagnetic fraction* ($\langle f_{em} \rangle$ *energy deposited by any* \mathcal{Y} , *positron, electron, or* π^{0} *into the calorimeter*), the π^{0} fraction ($\langle f \pi^{0} \rangle$ *energy deposited by* π^{0} 's). We then fit our results to an empirical power law:

$$\langle f_{em}(\pi^0)\rangle = 1 - \left(\frac{E}{E_0}\right)^{m-1}$$

We also calculate the *hadronic response* to *scintillation* and *Cherenkov* light:

$$h_{s} = \left(\frac{E_{scint}}{E_{i}} - f_{em}\right) \frac{1}{1 - f_{em}} \qquad h_{c} = \left(\frac{E_{Ceren}}{E_{i}} - f_{em}\right) \frac{1}{1 - f_{em}}$$

All of these in a event-by-event basis!

Electromagnetic fraction & hadronic response

Electromagnetic fraction & hadronic response

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Sampling Studies

We use a ½ sampling fraction (reading energy deposited in 50% of the total volume of the calorimeter).

Position inside the calorimeter is given by a vector (x, y, z) and the center of this coordinate system is at the center.

Position and layer number are related by:

$$layer = \frac{z}{cell \ size} + \frac{number \ of \ cells}{2}$$

We read *odd layers* only (first layer being 1).

Electron energy distribution

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Energy resolution

rel. Energy resolution (dual read out cor.) vs 1/sqrt(e)

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Energy resolution

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Energy resolution

Energy resolution can be parameterized as a linear function:

$$\sigma_E = c_1 + \frac{c_2}{\sqrt{E_{\text{in}}}}$$

And we can extract the resolution factor introduced by sampling by using:

$$\sigma_{E} = \sqrt{\sigma_{material} + \sigma_{sampling}}$$
E [GeV] $\sigma_{material} = \sigma_{sampling}$

$$c_{1} = -0.423$$

$$c_{2} = -0.423$$

$$c_{3} = -0.423$$

$$c_{1} = -0.423$$

$$c_{1} = -0.423$$

$$c_{2} = -0.423$$

$$c_{3} = -0.423$$

$$c_{1} = -0.423$$

$$c_{1} = -0.423$$

$$c_{1} = -0.423$$

$$c_{2} = -0.423$$

$$c_{3} = -0.423$$

$$c_{1} = -0.423$$

$$c_{1} = -0.423$$

$$c_{1} = -0.423$$

$$c_{2} = -0.423$$

$$c_{1} = -0.423$$

$$c_{1} = -0.423$$

$$c_{2} = -0.423$$

$$c_{3} = -0.423$$

$$c_{3} = -0.423$$

$$c_{3} = -0.423$$

$$c_{1} = -0.423$$

$$c_{2} = -0.423$$

$$c_{3} = -0.423$$

$$c_{4} = -0.423$$

$$c_{5} = -0$$

After correction to electron response:

Simulation Studies of a Total Absorption Dual Readout Calorimeter

After dual readout correction:

Electromagnetic fraction

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Pi0 fraction

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Electromagnetic & Pi0 fraction

$$\langle f_{em}(\pi^0) \rangle = 1 - \left(\frac{E}{E_0}\right)^{m-1}$$

$\langle f_{em} \rangle$	EO	m		
PbWO	0.614	0.895		
PbF2	0.919	0.871		
BGO	0.849	0.847		

$\left\langle f \pi^0 \right\rangle$	EO	m		
PbWO	0.614	0.895		
PbF2	0.919	0.871		
BGO	0.849	0.847		

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Values for hs & hc for electromagnetic and pi0 fractions

Energy [GeV]		PbF ₂			BGO			PbWO	
	$\langle f_{\it em} \rangle$	hs	hc	$\langle f_{\it em} angle$	hs	hc	$\langle f_{\it em} \rangle$	hs	hc
2	0.3472	0.7537	0.3156	0.404	0.8173	0.3412	0.4333	0.8144	0.3754
5	0.4167	0.7626	0.2549	0.4599	0.8429	0.2753	0.4883	0.8473	0.2989
10	0.4787	0.7642	0.2385	0.5067	0.8484	0.2688	0.5363	0.8579	0.2855
20	0.5199	0.7642	0.2205	0.5669	0.8536	0.2674	0.5937	0.8608	0.2706
50	0.5892	0.7733	0.225	0.6169	0.8571	0.2593	0.6328	0.8676	0.2662
100	0.6156	0.7753	0.2193	0.6550	0.8562	0.2546	0.6703	0.8706	0.2685
Energy [GeV]		PbF_2			BGO			PbWO	
	hs	hc	$\langle f_{\pi^0} \rangle$	hs	hc	$\langle f_{\pi^0} \rangle$	hs	hc	$\langle f_{\pi^0} \rangle$
2	0.8113	0.4571	0.1189	0.8654	0.5185	0.1309	0.8706	0.5656	0.1213
5	0.8521	0.4441	0.1924	0.883	0.4905	0.2211	0.898	0.5379	0.196
10	0.8327	0.4615	0.2485	0.8812	0.4795	0.3069	0.9082	0.5504	0.2497
20	0.8362	0.4621	0.2959	0.8858	0.4803	0.3883	0.9139	0.5589	0.3039
50	0.8493	0.4873	8 0.3714	0.8862	0.4615	0.4668	0.921	0.5692	0.3673
100	0.8015	0.3944	0.5109 Simulation	0.8852 Studies of a To	0.4538 otal Absorptic	0.5172 on Dual Read	0.9247 out Calorime	0.5801 ter	0.4205 20

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Simulation Studies of a Total Absorption Dual Readout Calorimeter

Number of Cherenkov photons

Simulation Studies of a Total Absorption Dual Readout Calorimeter