
Geant4 internal Classes
and Objects introduction to
CaTS

20 July 2012

Hans Wenzel Fermilab

User Action Classes

Contents
 Internal Objects

 Run and Event
 Track and Step
 StepPoint
 Dynamic Particle

 UserAction classes
 Run and Event
 Track and Step

 UserInformation classes
 G4VUserEventInformation
 G4VUserTrackInformation
 G4VUserPrimaryVertexInformation
 G4VUserPrimaryParticleInformation
 G4VUserRegionInformation

2

Introduction (1)
Extract information from G4 internal
objects
 Simulation is successively

split into
 Run consists of
 Event(s), consists of
 Particle(s) transported in
 Steps through detector

setup,
 depositing energy

(ionization),
 and creating secondaries

 Corresponding / related
Objects

 G4RunManager, G4Run
 G4Event
 G4Track, G4DynamicParticle
 G4Step, G4StepPoint

 G4Trajectory

 G4Stack

3

Introduction (2)
 User at each moment has possibility to take control

or access information via UserAction classes
 G4UserRunAction Actions for each Run
 G4UserEventAction Actions for each Event
 G4UserTrackingAction Actions for each Track
 G4UserSteppingAction Actions for each Step
 G4UserStackingAction Tracks Stack management

4

Introduction (3)
 User can replace Geant4 classes by providing his

own classes derived from the base classes:
 G4Run
 G4Trajectory
 G4VTrajectoryPoint

 User can attach optional User Information classes to
 G4Event
 G4Track
 G4PrimaryVertex
 G4Region

5

RunManager in Geant4
 G4RunManager class manages processing a run

 Must be created by user
 May be user derived class
 Must be singleton

 User must register in RunManager using
 SetUserInitialization() method

 Geometry
 Physics

 SetUserAction() method
 Event generator

 Optional UserAction objects

6

 runManager->SetUserInitialization(phys);

 runManager->SetUserInitialization(new DetectorConstruction(argv[1]));

 runManager->SetUserAction(new PrimaryGeneratorAction);

 runManager->SetUserAction(new RunAction());

 runManager->SetUserAction(new EventAction());

 runManager->SetUserAction(new StackingAction());

 runManager->Initialize();

The Minimum Geant 4
Program

From CaTS.cc (main()):

Run in Geant4
 Run is a collection of events

 A run consists of one event loop
 Starts with a /run/beamOn command.

 Within a run, conditions do not change, i.e. the user cannot
change
 detector setup
 settings of physics processes

 At the beginning of a run, geometry is optimized for navigation
and cross-section tables are calculated according to materials
appear in the geometry and the cut-off values defined.

 Run is represented by G4Run class or a user-defined class
derived from G4Run.
 A run class may have a summary results of the run.

 G4RunManager is the manager class
 G4UserRunAction is the optional user hook.

8

9

Optional User Run Action
Class

 G4UserRunAction
 G4Run* GenerateRun()

 Instantiate user-customized run object
 e.g. Output File

 void BeginOfRunAction(const G4Run*)
 Define histograms

 void EndOfRunAction(const G4Run*)
 Analyze the run
 Store histograms
 Close Output file

9Hans Wenzel

Event in Geant4
 An event is the basic unit of simulation in Geant4.
 At beginning of processing, primary tracks are generated. These

primary tracks are pushed into a stack.
 A track is popped up from the stack one by one and “tracked”.

Resulting secondary tracks are pushed into the stack.
 This “tracking” lasts as long as the stack has a track.

 When the stack becomes empty, processing of one event is over.
 G4Event class represents an event. It has following objects at

the end of its (successful) processing.
 List of primary vertices and particles (as input)
 Hits and Trajectory collections (as output)

 G4EventManager class manages processing an event.
 G4UserEventAction is the optional user hook.

10

11

Optional User Event Action
Class
 G4UserEventAction

 void BeginOfEventAction(const G4Event*)
 Event selection

 Using information from event generator, vertices, primary particles
 Rest Event counters etc.

 Optionally attach G4VUserEventInformation object
 void EndOfEventAction(const G4Event*)

 Output event information
 Analyse event

 Access to hits collection via G4Event::GetHCofThisEvent()
 Acces digitisation collection via G4Event:: GetDCofThisEvent()

 Fill histograms (with Event specific Info)

11

Track in Geant4
 Track is a snapshot of a particle.

 It has physical quantities of current instance only. It does not
record previous quantities.

 Step is a “delta” information to a track. Track is not a collection of
steps. Instead, a track is being updated by steps.

 Track object is deleted when
 it goes out of the world volume,
 it disappears (by e.g. decay, inelastic scattering),
 it goes down to zero kinetic energy and no “AtRest” additional

process is required, or
 the user decides to kill it artificially.

 No track object persists at the end of event.
 For the record of tracks, use trajectory class objects.

 G4TrackingManager manages processing a track, a track is
represented by G4Track class.

 G4UserTrackingAction is the optional user hook.

12

Track status

 At the end of each step, according to the processes involved, the state of a track
may be changed.
 The user can also change the status in UserSteppingAction.
 Statuses shown in blue are for users only, i.e. Geant4 kernel won’t set them.

 fAlive
 Continue the tracking.

 fStopButAlive
 The track has come to zero kinetic energy, but still AtRest process to occur.

 fStopAndKill
 The track no longer exists --it has decayed, interacted or gone out of the world boundary.
 Secondaries will be pushed to the stack.

 fKillTrackAndSecondaries
 Kill the current track and also associated secondaries.

 fSuspend
 Suspend processing of the current track and push it and its secondaries to the stack.

 fPostponeToNextEvent
 Postpone processing of the current track to the next event.
 Secondaries are still being processed within the current event.

13

14

Tracking User Action Classes
 G4UserTrackingAction

 void PreUserTrackingAction(const G4Track*)
 Decide if trajectory should be stored or not
 Create user-defined trajectory

 void PostUserTrackingAction(const G4Track*)
 Delete unnecessary trajectory

14

15

Stacking User Action Class
 G4UserStackingAction

 G4ClassificationOfNewTrack ClassifyNewTrack(const
G4Track*)
 Invoked every time a new track is created, ie. Pushed to the

stack
 (CaTS e.g. to count pi0, neutrons, beta of charged tracks)
 Classify a new track -- priority control

 Urgent, Waiting, PostponeToNextEvent, Kill
 Manipulate track stack,

 void PrepareNewEvent()
 Reset priority control

 void NewStage()
 Invoked when the Urgent stack becomes empty
 Change the classification criteria
 Event filtering (Event abortion)

15

Step in Geant4
 Step has two points and also “delta” information of a particle

(energy loss on the step, time-of-flight spent by the step, etc.).
 Point is represented by G4StepPoint class

 Each point knows the volume (and material). In case a step is
limited by a volume boundary, the end point physically stands on
the boundary, and it logically belongs to the next volume.
 Because one step knows materials of two volumes, boundary

processes such as transition radiation or refraction could be
simulated.

 G4SteppingManager class manages processing a step, a step is
represented by G4Step class.

 G4UserSteppingAction is the optional user hook.

Post-step point

Step

Boundary

Pre-step point 16

17

Stepping User Action Class
 G4UserSteppingAction

 void UserSteppingAction(const G4Step*)
 Change status of track

 Kill / suspend / postpone the track
 Draw the step (for a track not to be stored as a trajectory)

17

Trajectory and trajectory point (1)
 Track does not keep its trace. No track object persists at the end

of event.
 G4Trajectory is the class which copies some of G4Track

information.
 G4TrajectoryPoint is the class which copies some of G4Step

information.
 G4Trajectory has a vector of G4TrajectoryPoint objects.
 At the end of event processing, G4Event has a collection of

G4Trajectory objects.
 /tracking/storeTrajectory must be set to 1.

 G4Trajectory and G4TrajectoryPoint objects persist till the end of
an event
 Be careful not to store too many trajectories, memory growth.

 E.g. avoid for high energy EM shower tracks.

18

Trajectory and trajectory point (2)

 Keep in mind the distinct classes conceptually
corresponding
 G4Track G4Trajectory
 G4Step G4TrajectoryPoint

 G4Trajectory and G4TrajectoryPoint as provided by
Geant4 store only the minimum information.
 You can create your own trajectory / trajectory point classes

to store information you need.
 User classes must be derived from G4VTrajectory and

G4VTrajectoryPoint base classes.
 Do not use G4Trajectory nor G4TrajectoryPoint concrete class as base

classes unless you are sure to never ever add any additional data
member.

19

StepPoint in Geant4
 Two step point objects attached to step

 Pre-step point and post-step point

 G4StepPoint has information of track
representing a particle at this point
 Time (global event time, local, proper time since

creation of particle
 Position, kinetic energy, momentum
 Material
 …

20

 Step status is attached to G4StepPoint to indicate why that particular step was determined.
 Use “PostStepPoint” to get the status of this step.
 “PreStepPoint” has the status of the previous step.

 fWorldBoundary
 Step reached the world boundary

 fGeomBoundary
 Step is limited by a volume boundary except the world

 fAtRestDoItProc, fAlongStepDoItProc, fPostStepDoItProc
 Step is limited by a AtRest, AlongStep or PostStep process

 fUserDefinedLimit
 Step is limited by the user Step limit

 fExclusivelyForcedProc
 Step is limited by an exclusively forced (e.g. shower parameterization) process

 fUndefined
 Step not defined yet

 If you want to identify the first step in a volume, pick fGeomBoudary status in
PreStepPoint.

 If you want to identify a step getting out of a volume, pick fGeomBoundary status in
PostStepPoint

Step status

Step
PreStepPoint PostStepPoint

21

Recap – User action classes
 All needed UserAction classes

 must be constructed in main()
 must be provided to the RunManager using SetUserAction() method

 One mandatory User Action class
 Event generator must be provided
 Event generator class must be derived from

G4VUserPrimaryGeneratorAction
 List of optional User Action classes

 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserSteppingAction
 G4UserStackingAction

22

CaTS: Calorimeter and Tracker Simulation

CaTS is a flexible and extend-able framework (based on geant4 and
ROOT) for the simulation of calorimeter and tracking detectors. To be able
to simulate Dual Read out calorimeters it provides special sensitive
detectors and Hit classes that register both the energy deposit and the
number of Cerenkov photons produced by particles above the Cerenkov
threshold.

CaTS also allows the detailed study of single Calorimeter cells by enabling
the tracing of optical photons, providing sensitive detectors that register
optical photons and the gdml detector description allows to provide all
relevant optical properties (refraction Index, Absorption length, Scintillation
Yield,

Rayleigh scattering length, Surface properties (e.g. Reflectivity)....)

Detector Description: Xml based gdml input file (e.g. crystalcal.gdml) (Geometry,
Materials, optical properties, sensitive detector), we provide
working examples

Persistency uses Root reflexion (gccxml) to automatically, create
dictionaries for all Hit classes

Input modules: GPS, Particle Gun, HEPMC (Pythia)

Physics Lists: choice of all Reference Physics Lists which can be extended
to include optical physics processes (Cerenkov, Rayleigh,
Scintillation etc.)

Sensitive Detectors and Hits: TrackerSD,
CalorimeterSD,
DRCalorimeterSD (also registers Cerenkov photons),
StoppingCalorimeterSD,
PhotonSD: sensitive detector that registers optical photons.

User Actions: examples of user actions (EventAction, RunAction,
StackingAction,SteppingAction...) are provided

CVS Code repository &
Instructions:

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/?
hidenonreadable=1&f=h&logsort=date&sortby=file&hideattic=1&cvsr
oot=ilcdet http://home.fnal.gov/~wenzel/cvs.html#Optical

Elements of CaTS

CaTS in Action

•Crystal:

•PhotonSD

DRCalorimeterSD

For historical reasons some control still via environmental variables,

Will create messanger classes for that when I get the chance

export PHYSLIST=QGSP_BERT (Default FTFP_BERT)

export ENABLEOPTICAL=1 (Default OFF)

export ENABLESCINTILLATION=1 (Default Off)

How do we control CaTS?

./CaTS ../CaTS/gdml/crystalcal.gdml (electron.mac)

Most of the control via messenger classes →

 just type help on the command line to see

 what is available. But:

	Geant4 internal Classes and Objects
	Contents
	Introduction (1) Extract information from G4 internal objects
	Introduction (2)
	Introduction (3)
	RunManager in Geant4
	Slide 7
	Run in Geant4
	Optional User Run Action Class
	Event in Geant4
	Optional User Event Action Class
	Track in Geant4
	Track status
	Tracking User Action Classes
	Stacking User Action Class
	Step in Geant4
	Stepping User Action Class
	Trajectory and trajectory point (1)
	Trajectory and trajectory point (2)
	StepPoint in Geant4
	Step status
	Recap – User action classes
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

