
Geant4 internal Classes
and Objects introduction to
CaTS

20 July 2012

Hans Wenzel Fermilab

User Action Classes

Contents
 Internal Objects

 Run and Event
 Track and Step
 StepPoint
 Dynamic Particle

 UserAction classes
 Run and Event
 Track and Step

 UserInformation classes
 G4VUserEventInformation
 G4VUserTrackInformation
 G4VUserPrimaryVertexInformation
 G4VUserPrimaryParticleInformation
 G4VUserRegionInformation

2

Introduction (1)
Extract information from G4 internal
objects
 Simulation is successively

split into
 Run consists of
 Event(s), consists of
 Particle(s) transported in
 Steps through detector

setup,
 depositing energy

(ionization),
 and creating secondaries

 Corresponding / related
Objects

 G4RunManager, G4Run
 G4Event
 G4Track, G4DynamicParticle
 G4Step, G4StepPoint

 G4Trajectory

 G4Stack

3

Introduction (2)
 User at each moment has possibility to take control

or access information via UserAction classes
 G4UserRunAction Actions for each Run
 G4UserEventAction Actions for each Event
 G4UserTrackingAction Actions for each Track
 G4UserSteppingAction Actions for each Step
 G4UserStackingAction Tracks Stack management

4

Introduction (3)
 User can replace Geant4 classes by providing his

own classes derived from the base classes:
 G4Run
 G4Trajectory
 G4VTrajectoryPoint

 User can attach optional User Information classes to
 G4Event
 G4Track
 G4PrimaryVertex
 G4Region

5

RunManager in Geant4
 G4RunManager class manages processing a run

 Must be created by user
 May be user derived class
 Must be singleton

 User must register in RunManager using
 SetUserInitialization() method

 Geometry
 Physics

 SetUserAction() method
 Event generator

 Optional UserAction objects

6

 runManager->SetUserInitialization(phys);

 runManager->SetUserInitialization(new DetectorConstruction(argv[1]));

 runManager->SetUserAction(new PrimaryGeneratorAction);

 runManager->SetUserAction(new RunAction());

 runManager->SetUserAction(new EventAction());

 runManager->SetUserAction(new StackingAction());

 runManager->Initialize();

The Minimum Geant 4
Program

From CaTS.cc (main()):

Run in Geant4
 Run is a collection of events

 A run consists of one event loop
 Starts with a /run/beamOn command.

 Within a run, conditions do not change, i.e. the user cannot
change
 detector setup
 settings of physics processes

 At the beginning of a run, geometry is optimized for navigation
and cross-section tables are calculated according to materials
appear in the geometry and the cut-off values defined.

 Run is represented by G4Run class or a user-defined class
derived from G4Run.
 A run class may have a summary results of the run.

 G4RunManager is the manager class
 G4UserRunAction is the optional user hook.

8

9

Optional User Run Action
Class

 G4UserRunAction
 G4Run* GenerateRun()

 Instantiate user-customized run object
 e.g. Output File

 void BeginOfRunAction(const G4Run*)
 Define histograms

 void EndOfRunAction(const G4Run*)
 Analyze the run
 Store histograms
 Close Output file

9Hans Wenzel

Event in Geant4
 An event is the basic unit of simulation in Geant4.
 At beginning of processing, primary tracks are generated. These

primary tracks are pushed into a stack.
 A track is popped up from the stack one by one and “tracked”.

Resulting secondary tracks are pushed into the stack.
 This “tracking” lasts as long as the stack has a track.

 When the stack becomes empty, processing of one event is over.
 G4Event class represents an event. It has following objects at

the end of its (successful) processing.
 List of primary vertices and particles (as input)
 Hits and Trajectory collections (as output)

 G4EventManager class manages processing an event.
 G4UserEventAction is the optional user hook.

10

11

Optional User Event Action
Class
 G4UserEventAction

 void BeginOfEventAction(const G4Event*)
 Event selection

 Using information from event generator, vertices, primary particles
 Rest Event counters etc.

 Optionally attach G4VUserEventInformation object
 void EndOfEventAction(const G4Event*)

 Output event information
 Analyse event

 Access to hits collection via G4Event::GetHCofThisEvent()
 Acces digitisation collection via G4Event:: GetDCofThisEvent()

 Fill histograms (with Event specific Info)

11

Track in Geant4
 Track is a snapshot of a particle.

 It has physical quantities of current instance only. It does not
record previous quantities.

 Step is a “delta” information to a track. Track is not a collection of
steps. Instead, a track is being updated by steps.

 Track object is deleted when
 it goes out of the world volume,
 it disappears (by e.g. decay, inelastic scattering),
 it goes down to zero kinetic energy and no “AtRest” additional

process is required, or
 the user decides to kill it artificially.

 No track object persists at the end of event.
 For the record of tracks, use trajectory class objects.

 G4TrackingManager manages processing a track, a track is
represented by G4Track class.

 G4UserTrackingAction is the optional user hook.

12

Track status

 At the end of each step, according to the processes involved, the state of a track
may be changed.
 The user can also change the status in UserSteppingAction.
 Statuses shown in blue are for users only, i.e. Geant4 kernel won’t set them.

 fAlive
 Continue the tracking.

 fStopButAlive
 The track has come to zero kinetic energy, but still AtRest process to occur.

 fStopAndKill
 The track no longer exists --it has decayed, interacted or gone out of the world boundary.
 Secondaries will be pushed to the stack.

 fKillTrackAndSecondaries
 Kill the current track and also associated secondaries.

 fSuspend
 Suspend processing of the current track and push it and its secondaries to the stack.

 fPostponeToNextEvent
 Postpone processing of the current track to the next event.
 Secondaries are still being processed within the current event.

13

14

Tracking User Action Classes
 G4UserTrackingAction

 void PreUserTrackingAction(const G4Track*)
 Decide if trajectory should be stored or not
 Create user-defined trajectory

 void PostUserTrackingAction(const G4Track*)
 Delete unnecessary trajectory

14

15

Stacking User Action Class
 G4UserStackingAction

 G4ClassificationOfNewTrack ClassifyNewTrack(const
G4Track*)
 Invoked every time a new track is created, ie. Pushed to the

stack
 (CaTS e.g. to count pi0, neutrons, beta of charged tracks)
 Classify a new track -- priority control

 Urgent, Waiting, PostponeToNextEvent, Kill
 Manipulate track stack,

 void PrepareNewEvent()
 Reset priority control

 void NewStage()
 Invoked when the Urgent stack becomes empty
 Change the classification criteria
 Event filtering (Event abortion)

15

Step in Geant4
 Step has two points and also “delta” information of a particle

(energy loss on the step, time-of-flight spent by the step, etc.).
 Point is represented by G4StepPoint class

 Each point knows the volume (and material). In case a step is
limited by a volume boundary, the end point physically stands on
the boundary, and it logically belongs to the next volume.
 Because one step knows materials of two volumes, boundary

processes such as transition radiation or refraction could be
simulated.

 G4SteppingManager class manages processing a step, a step is
represented by G4Step class.

 G4UserSteppingAction is the optional user hook.

Post-step point

Step

Boundary

Pre-step point 16

17

Stepping User Action Class
 G4UserSteppingAction

 void UserSteppingAction(const G4Step*)
 Change status of track

 Kill / suspend / postpone the track
 Draw the step (for a track not to be stored as a trajectory)

17

Trajectory and trajectory point (1)
 Track does not keep its trace. No track object persists at the end

of event.
 G4Trajectory is the class which copies some of G4Track

information.
 G4TrajectoryPoint is the class which copies some of G4Step

information.
 G4Trajectory has a vector of G4TrajectoryPoint objects.
 At the end of event processing, G4Event has a collection of

G4Trajectory objects.
 /tracking/storeTrajectory must be set to 1.

 G4Trajectory and G4TrajectoryPoint objects persist till the end of
an event
 Be careful not to store too many trajectories, memory growth.

 E.g. avoid for high energy EM shower tracks.

18

Trajectory and trajectory point (2)

 Keep in mind the distinct classes conceptually
corresponding
 G4Track   G4Trajectory
 G4Step   G4TrajectoryPoint

 G4Trajectory and G4TrajectoryPoint as provided by
Geant4 store only the minimum information.
 You can create your own trajectory / trajectory point classes

to store information you need.
 User classes must be derived from G4VTrajectory and

G4VTrajectoryPoint base classes.
 Do not use G4Trajectory nor G4TrajectoryPoint concrete class as base

classes unless you are sure to never ever add any additional data
member.

19

StepPoint in Geant4
 Two step point objects attached to step

 Pre-step point and post-step point

 G4StepPoint has information of track
representing a particle at this point
 Time (global event time, local, proper time since

creation of particle
 Position, kinetic energy, momentum
 Material
 …

20

 Step status is attached to G4StepPoint to indicate why that particular step was determined.
 Use “PostStepPoint” to get the status of this step.
 “PreStepPoint” has the status of the previous step.

 fWorldBoundary
 Step reached the world boundary

 fGeomBoundary
 Step is limited by a volume boundary except the world

 fAtRestDoItProc, fAlongStepDoItProc, fPostStepDoItProc
 Step is limited by a AtRest, AlongStep or PostStep process

 fUserDefinedLimit
 Step is limited by the user Step limit

 fExclusivelyForcedProc
 Step is limited by an exclusively forced (e.g. shower parameterization) process

 fUndefined
 Step not defined yet

 If you want to identify the first step in a volume, pick fGeomBoudary status in
PreStepPoint.

 If you want to identify a step getting out of a volume, pick fGeomBoundary status in
PostStepPoint

Step status

Step
PreStepPoint PostStepPoint

21

Recap – User action classes
 All needed UserAction classes

 must be constructed in main()
 must be provided to the RunManager using SetUserAction() method

 One mandatory User Action class
 Event generator must be provided
 Event generator class must be derived from

G4VUserPrimaryGeneratorAction
 List of optional User Action classes

 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserSteppingAction
 G4UserStackingAction

22

CaTS: Calorimeter and Tracker Simulation

CaTS is a flexible and extend-able framework (based on geant4 and
ROOT) for the simulation of calorimeter and tracking detectors. To be able
to simulate Dual Read out calorimeters it provides special sensitive
detectors and Hit classes that register both the energy deposit and the
number of Cerenkov photons produced by particles above the Cerenkov
threshold.

CaTS also allows the detailed study of single Calorimeter cells by enabling
the tracing of optical photons, providing sensitive detectors that register
optical photons and the gdml detector description allows to provide all
relevant optical properties (refraction Index, Absorption length, Scintillation
Yield,

Rayleigh scattering length, Surface properties (e.g. Reflectivity)....)

Detector Description: Xml based gdml input file (e.g. crystalcal.gdml) (Geometry,
Materials, optical properties, sensitive detector), we provide
working examples

Persistency uses Root reflexion (gccxml) to automatically, create
dictionaries for all Hit classes

Input modules: GPS, Particle Gun, HEPMC (Pythia)

Physics Lists: choice of all Reference Physics Lists which can be extended
to include optical physics processes (Cerenkov, Rayleigh,
Scintillation etc.)

Sensitive Detectors and Hits: TrackerSD,
CalorimeterSD,
DRCalorimeterSD (also registers Cerenkov photons),
StoppingCalorimeterSD,
PhotonSD: sensitive detector that registers optical photons.

User Actions: examples of user actions (EventAction, RunAction,
StackingAction,SteppingAction...) are provided

CVS Code repository &
Instructions:

http://cdcvs.fnal.gov/cgi-bin/public-cvs/cvsweb-public.cgi/?
hidenonreadable=1&f=h&logsort=date&sortby=file&hideattic=1&cvsr
oot=ilcdet http://home.fnal.gov/~wenzel/cvs.html#Optical

Elements of CaTS

CaTS in Action

•Crystal:

•PhotonSD

DRCalorimeterSD

For historical reasons some control still via environmental variables,

Will create messanger classes for that when I get the chance

export PHYSLIST=QGSP_BERT (Default FTFP_BERT)

export ENABLEOPTICAL=1 (Default OFF)

export ENABLESCINTILLATION=1 (Default Off)

How do we control CaTS?

./CaTS ../CaTS/gdml/crystalcal.gdml (electron.mac)

Most of the control via messenger classes →

 just type help on the command line to see

 what is available. But:

	Geant4 internal Classes and Objects
	Contents
	Introduction (1) Extract information from G4 internal objects
	Introduction (2)
	Introduction (3)
	RunManager in Geant4
	Slide 7
	Run in Geant4
	Optional User Run Action Class
	Event in Geant4
	Optional User Event Action Class
	Track in Geant4
	Track status
	Tracking User Action Classes
	Stacking User Action Class
	Step in Geant4
	Stepping User Action Class
	Trajectory and trajectory point (1)
	Trajectory and trajectory point (2)
	StepPoint in Geant4
	Step status
	Recap – User action classes
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

