DBD HCAL section report and RPC DHCAL progress

> Lei Xia ANL - HEP

HCAL section outline (original)

- 4.3 Hadron Calorimeter
 - 4.3.1 HCAL requirements
 - 4.3.2 Description of the DHCAL concept
 - 4.3.3 Global HCAL mechanical design
 - 4.3.4 Baseline technology
 - RPC design
 - Readout
 - Active layer design
 - Services (Gas, HV, LV)
 - Results of prototype testing
 - RPC tests, DHCAL prototype and TCMT, test beam campaigns, results
 - 4.3.5 R&D towards technical feasibility and optimization
 - 4.3.6 physics performance specific to baseline
 - 4.3.7 Alternative technologies
 - GEM, Micromegas, Scintillators
- 4.4 Calorimeter Performance
 - 4.4.1 1TeV issues

HCAL section outline (current status)

- 4.3 Hadron Calorimeter
 - 4.3.1 HCAL requirements
 - 4.3.2 Description of the DHCAL concept
 - 4.3.3 Global HCAL mechanical design
 - 4.3.4 Baseline technology
 - RPC design
 - Readout
 - Active layer design
 - Services (Gas, HV, LV)
 - Results of prototype testing
 - RPC tests, DHCAL prototype and TCMT, test beam campaigns, (results)
 - 4.3.5 DHCAL prototype performance
 - Noise, muon calibration, positron response, pion response
 - 4.3.6 R&D towards technical feasibility and optimization
 - 4.3.7 physics performance specific to baseline
 - 4.3.8 Alternative technologies
 - GEM, Micromegas, Scintillator
- 4.4 Calorimeter Performance
 - 4.4.1 1TeV issues

- Things are more or less there
- Have something, need update/discussion
- Nothing at the moment

mpaigns, (resu

Main issue

- DHCAL R&D made a lot of progress
 - Successfully built and tested a large prototype
 - Achieved proof of principle: DHCAL really works
 - Developed an embedded readout that works really well
- However, we didn't put in a lot of effort into designing a real detector:
 - We are confident that a real DHCAL system is within reach
 - But a lot design effort and R&D are needed to get there don't have the resources to do it...
- For DBD: a lot of things can not be very detailed

Global HCAL mechanical design()

- Currently copied Lol
 - This design has very long (6M) barrel modules → is there any changes since Lol?
 - A similar design (Vic. Guarino, ANL) exist with shorter wedge shaped module
 - A new idea similar to ATLAS tile Cal (RPC plane vertical to beam) was studied with simulation (U. Oregon, ANL)
 - Studied response and position reconstruction
 - There are some issues
 - Certainly not ready for DBD

Barrel

• Do we need any update from Lol?

Baseline technology: readout ()

- Described the DHCAL prototype readout system
 - Built around DCAL chip
 - 2 stages of data concentration
 - Very successful for test beam and prototype tests
 - NOT for a real DHCAL system, but it is a good starting point
- Pointed out two possibilities for future R&D
 - 1. Continue development of the current DCAL system
 - Power reduction, better data transmission
 - Lower risk
 - 2. Adopting KPiX readout for DHCAL
 - Need to start from RPC tests, higher risk, less flexibility
 - More uniform readout across SiD subsystems
- Is this approach OK? Any suggestions?

Baseline technology: active layer design ()

- Nothing is written down yet: discussion still on-going
- DHCAL prototype has a cassette structure that can be used as a starting point/reference
 - Layers inserted/taken out into/out of absorber structures multiple times
 - Survived multiple transportations without breaking any RPC
 - Proved possible for repairs
 - Thickness close to requirement, can be significantly reduced
 - DCON still sticks out, services need to be improved/re-arranged
- Marty's team has a new design based on 1-glass RPC and KPiX readout
 - Very inspiring design idea
 - 32x32cm² RPC + readout board as the building block
 - Total thickness within requirement including tolerance!
 - However, some immediate worries: HV, gas distribution, cable/connector...
- Need guideline on how to proceed
 - Can we again list options, instead of making decisions?

Baseline technology: services (gas, HV, LV) ()

- The services is tightly coupled to layer design
 - It is almost not possible to have anything specific without making a lot of important design decisions
 - A lot of R&D is needed for gas and HV system
 - Gas recirculation
 - HV distribution and monitoring
- Do we still want to talk about services?
 - All I can imagine is to point out the necessary R&D's, but it is already included in the future R&D part...

DHCAL performance

- 4.3.5 DHCAL prototype performance
 - This is an added subsection, intended to replace 4.3.7
 - Have test beam data in hand, but only preliminary results
 - Not ready to validate simulation or access baseline design performance
 - Thought it might be a good idea just to talk about prototype performance and point out its similarity to baseline
- 4.3.7 physics performance specific to baseline
 - Suggest to remove this subsection

Alternative technologies

- GEM
 - Andy already wrote this part
- Micromegas
- Scintillator
 - I forgot to ask for updates from these two efforts (mostly due to a misunderstanding)
 - Currently have Lol entries in hand
 - Will ask for updates after this workshop

Calorimeter Performance, 1TeV issue

- I have nothing for this section (not sure if I should)
- Seems to me that the content should come from PFA studies...

Summary of DHCAL section

- A good fraction of the text is in place
- Suggest to remove a few items
- Need guideline for a few subsections/items
 - Mechanical design
 - Readout
 - Layer design
 - Services
 - Baseline/prototype performance

RPC DHCAL R&D update

- Test beam
 - Finished test beam at Fermilab with Fe absorber
 - Started new test beam effort at CERN with Tungsten absorber
- Data analysis
 - Fermilab data is not quite done yet
 - Calibration is more complicated than thought but getting there
 - Noise analysis, shower analysis, simulation effort all made good progress
 - Drafts for instrumentation paper exist and being circulated within group
 - More data flowing in with CERN test beam
 - Working with CERN team on new data

Very successful CERN test beam

- Wonderful test beam experience
 - Many thanks to CERN LCD team! (Lucie, Eric, Wolfgang, Jan, and many others ...)
- RPC/readout/cassette survived inter-continental shipping
- CERN built a cooling tent around DHCAL very stable temperature
- Had 2 weeks at PS \rightarrow 1 10 GeV
- Had 3 weeks at SPS, 1 more week coming up in Nov. \rightarrow up to 300 GeV
- Already had more data than several months data taking at Fermilab
 - Much better timing structure of the beam at CERN
 - Also better duty cycle at CERN

First look at Tungsten data

Simulation

Operating conditions of Fermilab At CERN quite different ($6.3 \rightarrow 6.0 \text{ kV}$) Response (in x) rescaled to match data

Asymmetric tail present as well

EM response is significantly depressed \rightarrow very non-compensating \rightarrow good test for software compensation

First look at Tungsten data

DHCAL has significantly less number of hits in Tungsten than in Fe If go with Tungsten absorber, one should consider smaller pad size for DHCAL

DHCAL response – first look only

Lessons/issues learned (random order)

- RPC gap size needs better control during production
- HV insulation is not trivial
 - Especially when HV is all the way to the edge of RPC and absorber plate is right next to it
 - Used to hold prototype production for several weeks
- HV lead needs improvement
 - Currently using copper tape but the adhesive seem to interact with resistive paint and make it losing conductivity
 - This is THE major problem we had at test beam
- Gas leakage can cause a lot of headache
 - Mainly due to crack on the glue trace, can be repaired
- Noisy regions in some RPCs
 - Glass cleaning issue during production

 Most of these issues are understood and can be avoided in construction phase

Summary

- W-DHCAL test beam is the major task this year
 - 2 weeks @ PS, 3 weeks @ SPS are done, one more week at SPS in November.
 - The test beam running is very successful, a lot of new data
- Data analysis is on-going
 - All analysis topics are making good progress
 - Calibration is still a main issue
- We learned a lot from the large scale prototype tests
 - Valuable experience for detector design/construction