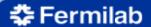

International Linear Collider at Fermilab

ILC Controls WBS Costing for Computing

Margaret Votava Fermilab

June 1, 2006

Costing Model Functional Diagram of Linac LLRF Fast Feedback Control Loop (contribution from one linac only)



International Linear Collider at Fermilab

Notes from 5Hz Feedback

- Each RF station transfer 50Kb of data
 - Wave forms
 - RF Every pulse has 4 waveforms
 - each waveform has 3000 points (ie longwords)
 - Few Scalars
 - PS and RF
 - Data transfer must be guaranteed to occur in 10ms time slices. Rates during this slice are:
 - Single RF station: 5Mb/sec
 - Sector: 80Mb/sec
 - Single linac 2Gb/sec
- Single commodity computer/sector will be sufficient to process feedback algorithms
- Algorithm nodes will transfer data to the DAQ for archiving/monitoring

June 1, 2006

International Linear Collider at Fermilab

Central Computing

- for 1 Linac
 - 24 nodes for data archiving (1 per sector)
 - 24 nodes for fast feedback algorithms (1 per sector)
 - 50 nodes for monitoring/diagnostics (2 per sector)
- Additional sectors
 - 4 sectors/damping ring (ie, x3)
 - 4 sectors/source (ie, x2)
- Other Networking
 - General purpose (wireless in tunnel would be nice)
 - Streaming video
 - Timing
 - MPS (we don't cost)
- For complex
 - 50-100 nodes for central processing (some for "outside" controls network)
 - 512-1024 node linux farm for simulation
 - Data archiving (tape) for 0.5 Pb/year with a1PB disk cache.
 - Database
- Support Staff
 - 2 System Administrators
 - 2 Database Administrators
 - 1 Network Engineer
 - 1 Computer Security expert
 - 1-2 equipment tracking

June 1, 2006