

Staging in the TDR

Relative to TDR 500 GeV baseline (1312 bunches)

Two stage compressor (5-<u>15 GeV</u>)

Total Main Linac infrastructure	
Linac components:	50%
Cryogenics:	65%
RF AC power	75%

Civil Engineering (Tunnel)

- Build tunnel/shafts only for 250 GeV
 - Cheapest option!

ilc

- Energy extension now requires major civil construction (+cost)
 - conceptually the same as for TeV upgrade option
- Shorten schedule ~2 years (guess)

Build full 500 GeV machine tunnel

- Assume install low energy linac first
 - long 125/150 GeV transport line in 'empty tunnel.
- Energy upgrade now just adds accelerator to tunnel
 - Options for 'adiabatic' upgrading
 - Implications for mass production scenarios (long term investment may now look attractive)
 - Additional upfront costs. May need to sell/cost entire project upfront
 - More expensive but over a longer time scale.
- Shorten schedule <2 years since all tunnels need to be constructed.

~77% TDR \$

~70% TDR \$

- May consider more conservatism for 'energy overhead'
 - known physics targets!
- (Integrated) luminosity requirement for LHF
- Positron polarisation for LHF?
 - 10Hz and 25GeV additional e- linac unattractive
 - Should certainly focus on this operational area