

R&D for TDR

Summary of TDP R&D items and baseline changes to RDR – to be included and highlighted in TDR text

> AD & I 15 August 2012 Marc Ross

First critical review of the 'July TDR snapshot' – given by EC last week

2012-08-15

TDR R&D Roll-up

1

TDP Milestones and Decisions

- We listed milestones in the 'R&D Plan'
- and recorded decisions through 'Change Control' (TLCC and BTR)
- Each TDR1 R&D section should include conclusions and refer to the relevant TDR2 section
 - in some cases primary authors did not participate in change control and their sections report R&D without summarizing impact.

• Examples for review (to be included in TDR):

SCRF R&D Plan Milestones

Table 4-1: Milestones for the SCRF R&D Programme

TDR R&

Stage	Subjects	Milestones to be achieved	Year
SO	9-cell cavity	35 MV/m, max., at $Q_0 \ge 8 \times 10^9$, with a production yield of 50% in TD PHASE 1, and 90% in TD PHASE 2	2010/
		1), 2)	2012
S1	Cavity-string	31.5 MV/m, on average, at $Q_0 \ge 10^{10}$, in one cryomodule, including a global effort	2010
S2	Cryomodule-string	31.5 MV/m, on average, with full-beam loading and acceleration	2012

Table 3-2 Number of ILC-like (1.3 GHz) SCRF cavities manufactured, ordered and projected by the end of TD Phase 2.

	Before	FY2008	FY2009	FY2010	Sum by	TD PHASE -2
	TDP				Fy2010	FY2011-2012
Americas	36	0	12	30+10	88	(TBD)
Asia JP	15	3	13		31	~10 + (TBD)
CN			1	1	2	
Europe	68	-		26*	94	(TBD)
(XFEL)				(640**)	(640)	
Total	119	4	26	67	215 (+640)	~ 10 + (TBE Ta

lan (release 2), has been revised to be the production yield of 50 % in the TDP-1.

; to be included in the milestone list in near future.

Table 4-5: R&D issues which are evaluated in S1-Global

*) High-gradient program (ILC-HiGrade),

**) number of order under discussion (for XFEL).

R&D Plan V5, 08.2010

Subject	Contents	Contributed by
Cool-down and cryogenic	Alignment and	KEK, IHEP, DESY
performance	Frequency deviation	
	Heat load	
Low-power RF	Tuner (motor and Piezo) test and	KEK, FNAL, INFN
	frequency tuning	
	Qt calibration	
	HOM property	
	Single pulse response to Piezo	
	Tuner	
High-power RF	High gradient test with high-	KEK, FNAL, DESY
Dynamic Heat Load	power RF	
LLRF	High gradient operation with	KEK, FNAL
	high-power RF, control. and	
Dynamic Heat Load	feedback	
Distributed RF	DRFS functioning with LLRF	KEK, FNAL
Distributed RF	control/feedback	3

Specific string test goals, listed in order of importance, include:

- **Demonstrate stable acceleration at nominal parameters**. The nominal accelerating gradient specification for the RDR RF Unit is 31.5 MV/m, average, with 0.5% pulse to pulse RF amplitude stability / 0.5° pulse to pulse phase stability at any point during the ~1 ms RF pulse.
 - The demonstration should include feedback and related controls to achieve stable phase and amplitude at nominal ILC beam intensity
 - o Evaluation and demonstration of operational gradient margin budget and
 - Demonstration of operation with a spread in cavity limiting gradients.
- Tests of basic system parameters
 - o demonstrate operation of a RDR RF-unit or similar linac segment
 - determine the required power overhead under practical operating conditions
 - to measure dark current and x-ray emission, (this is to be used to establish precise radiation dose-rate limit vertical test acceptance criteria), and
 - to check for heating from higher-order modes in order to determine the dynamic cryogenic heat load with full beam current operation
- Tests and optimisation of operational and logistical strategies
 - o developing RF fault recognition and recovery procedures
 - o evaluating cavity quench rates and coupler breakdowns
 - o testing component reliability
 - performing long-term testing of cryomodules, (including thermal cycling between beam operations), and
- assembling the string an actual tunnel to explore installation, maintenance,
 2012-08-15 and repair issues.
 TDR R&D Roll-up

System Test Goals

R&D Plan V5, 08.2010

Electron Source

R&D Plan V5, 08.2010

R&D Milestones:

ic

- mid 2010 Procurement of a coherent V18 laser
- end 2010 Inverted DC gun prototype 2 at 120kV

Final laser demonstration

ILC beam demonstration (time structure) using 100kV SLAC SLC gun and cathodes

- mid 2012 Installation of final ILC test facility (gun and laser) at JLab
- end 2012 Final beam tests

Positron · · · Source

The positron source R&D programme can be separated into two categories:

- 1) R&D on critical components for the baseline source (undulator-driven).
- 2) R&D on alternative source technology (or for the auxiliary source).

R&D Milestones

Baseline R&D (Undulator-driven source)

- end 2010 Completion of rotating target magnetic eddy-current tests Conceptual design study (feasibility) for magnetic flux concentrator Conceptual design study (feasibility) for liquid lithium lens Source parameters based on possible Nb₃Sn undulator design
- mid 2011 Demonstration of target rotating vacuum seal using 'surrogate target' Horizontal cold-tests of 4m undulator prototype Conceptual design study (feasibility) for magnetic flux concentrator
- end 2011 Analyse (simulation) of target shock-wave survivability Target radiation damage estimates (lifetime modelling) Radiation tests of ferrofluid (rotating seal)
- R&D Plan V5, 08.2010
- end 2012 Prototype module of Flux Concentrator (funding permitting) end 2013 Feasibility of Nb₃Sn undulator

Alternative / Auxiliary source R&D

end 2011 Boron-nitride window beam tests at KEK

TIDE READ REAL HEAD LESTS at KEK

6

R&D Milestones:

Remaining R&D on fast kickers

mid 2011 Demonstrate kick-angle stability with multibunch 3MHz extraction at ATF

- mid 2011 Evaluate kicker impedance
- end 2011 Complete and test SLAC fast pulser prototype

Low emittance tuning

end 2012 Demonstration of extracted 2 pm vertical emittance at ATF/ATF2 (multibunch)

i . .

R&D Milestones:

- RTML end 2010 Complete design of lattice, and evaluation of beam dynamics
 - end 2012 Demonstration of required phase stability at TTF2/FLASH

Machine detector interface R&D (engineering)

mid 2010Finalisation of work plan and resourcesend 2011First draft of engineering requirements documentsmid 2012Final draft of engineering requirements documentend 2012Comprehensive design of the high-power main beam dumpsend 2012SC final doublet prototype design and test

R&D Plan V5, 08.2010

2012-08-15

DR

MDI

TDR R&D Roll-up

Milestone for the CFS Group: Value Engineering

Improved Surface Building Facilities Criteria

01.2011

. . .

Milestones for the CFS Group: Development of Criteria Accelerator Central Region Criteria Complete 01.2011 Central Region Design and 2D drawings Complete 06.2011 Main Linac – both alternative HLRF schemes Design and Drawings 01.2012 complete, each region Interaction Region Criteria Complete 01.2012 **Baseline Design Complete** 06.2012 Full 3D drawing set complete 06.2012 CFS cost estimates complete, each region 01.2012 Life-Safety analysis complete 01.2011 **Review of CFS Design** 03.2011

R&D Plan V5, 08.2010

Goals and Milestones for the siting effort are:	
Site Specific Design Preliminary Evaluation	01.2011
Site Specific Design Final Evaluation	01.2012
Site Specific Design Cost Analysis	01.2012
Review of Site Specific Design Activity TDR R&D Roll-up	06.2011 8

2012-08-15

The project-wide comprehensive process of estimating risk is a task for TD Phase 2:

- 1) Develop a clear and agreed-upon methodology a suitable matrix scoring system.
- 2) Clearly identify those design elements which remain high technical risk (across the entire project).
- 3) Score each component based on the status of the risk-mitigating R&D based on the prescribed methodology. This process will require a consensus-building approach across the TAG leaders and key experts.
- 4) Develop a practical mitigation strategy model. For example, what would the project do if post TDR progress was deemed unsatisfactory before construction start?
- 5) Estimate the cost for the mitigation effort, using costing guidelines similar to those used for the TDR.
- 6) Roll the resulting scoring and associated mitigation costs up to create a summary 'risk assessment' to be entered at the top level of the register.
- 7) Review the most serious register elements in detail to ensure the scoring, mitigation strategy and costing have been done consistently according to basic guidelines.

A comprehensive initial estimate for the Risk Register across the project should be an early goal in TD Phase 2. The register should then be maintained an updated as the remainder of the TD Phase R&D and AD&I activities progress, concluding with the publication of the TDR.

Milestones:

- Development and publication of methodology (end 2010)
- Initial canvassing of qualitative risk assessment across the Technical Areas (March 2011)
- Development of scores and ranking and final publication of final consensus (end 2011)
- Review / update of risk register for TDR (mid 2012)
 2012-08-15
 TDR R&D Roll-up

Risk assessment

R&D Plan V5, 08.2010

ML Baseline Review (KEK 01.2012

	Baseline Changes: to be fixed at KEK MLT BTR	RDR	Proposed (TDR)
1	Cavity gradient : (discussion led by R. Geng)		
а	Cavity production and process recipe	no post-EP degreaser; cost based on different process	post-bulk EP visual inspection; 2nd process limited to HPR depending on test indication
b	Define production yield including new parameters, such as radiation	20% cavities discarded	90% yield with two passes as needed
с	Gradient spread of 31.5 MV/m +/-20 %, with sorting method,	()+/-20%
d	Gradient degradation after assembly into the cryomodule	35MV to 31.5MV/m (SB2009> 35:34:31.5)	Given circulators will be used, statiscal (<> and σ) parameterization is best.
2	Cavity Integration (discussion led by H. Hayano)		
а	Tuner, coupler, beam-flange, magnetic shield, and LHe tank	Flange: diamond, Coupler: 45 mm, Tuner: Not scissors-type, magnetic shield: outside	1) Blade tuner appears to meet performance requirements and is cheaper, 2) Coupler types can be plug-C
b	Plug-compatible design to be allowed in case of cost equivalent or more cost effective.		cavity / coupler plug- compatibility
С	Cavity <u>delivery condition</u> with LHe-tank, and cold-test sequence/monitor,	TESLA / TTF tank-off testing	follow E-XFEL deliverable specification
3	Cryomodule and Cavity-string Assembly (discussion led by P. Pe	erini)	
a	Cryomodule string configuration with 8 + (4+Q+4) + 8 cavity-string assembly	9 4Q4 9	8 4Q4 8
b	Simplification of 5K radiation-shield; flow reversal	Complete 5K shield	no 'hard' lower 5K shield
с	Split-yoke, conduction-cooled quadrupoles	pool boiling; not splittable	conduction cooled using high purity Al laminate
	EXFEL alignment scheme 2-08-15 TDR R&D R	oll-up	Uses tracking technology and flange drill-point fiducials

ilc

ML BTR

4 Cavity and Cryomodule Test (discussion led by H. Hayano)

	а	Power Coupler conditioning strategy	in-situ	
	b	Cold performance test: What fraction is to be cold tested? What is to be tested?	only 30% CM tested before installation	
5		Cryogenics (discussion led by T	Peterson)	
	а	Location and possible reduction of the number of cryo plants		
	b	Capacity optimization and heat balance with cryomodule heat-load		

ML BTR

12

KCS/DRFS/RDR-unit HLRF system configuration a including backup power supply and utilities with the single tunnel design

	b	Marx generator	Bouncer	Marx
	С	AC power with gradient spreads,	Done for SB2009	
1		Adaptability against cavity degradation after installation into cryomodule, by using circulator and power distribution system,	Circulators	Circulators
	е	low-power and high-power option review		
	f	Tunable power distbribution system	P_k and Q_l remote control	
7		ML Integration (discussion led by C. Adolph	sen)	
·	а	Beam dynamics: Quadrupole/BPM periodicity, Q location, alignment, and beam tunability, Bunch spacing limit specially on KCS (requirement of DR beam dynamics)		
	U	Availability, reliability, and backup of cryomodules to be required	3% longer tunnel - empty, not equipped.	

- The TDR must have 'shelf life'
 - The value of R&D and value of ILC Design has always been clear
 - Timeline is not clear
- Design decisions must be 'traceable'
- R&D sections in TD Report must include a summary and conclusions
 - and be appropriately referenced within TDR itself and within EDMS
 - Remaining work to be outlined

-

TDR R&D Roll-up