Analytic Formula of Spatial Resolution

(from RY Ph.D. thesis)

R. Yonamine

30th Aug. 2012

Overview of Basic Processes

1. Charged particles ionize gas molecules. The electrons generated in this process are called seed electrons.

- Primary Ionization

 $P_{PI}(N)$: collision between incident particle and gas molecules - Secondary Ionization $P_{SI}(M)$: further ionization by primary ionized electrons N : # of primary clusters M : cluster size

2. The seed electrons drift toward the readout plane while diffusing. $P(\Delta x; \sigma_d) \frac{1}{\sqrt{2\pi\sigma_d}} \exp\left[-\frac{1}{2} \left(\frac{\Delta x}{\sigma_d}\right)^2\right]$

$$P(\Delta x; \sigma_d) \frac{1}{\sqrt{2\pi\sigma_d}} \exp\left[-\frac{1}{2}\left(\frac{1}{\sigma_d}\right)\right]$$
$$\sigma_d^2 = C_d^2 z$$

3. The Seed electrons are multiplied by a gas amplification device. Polya distribution

$$P_G(G/\bar{G};\theta) = \frac{(\theta+1)^{\theta+1}}{\Gamma(\theta+1)} \left(\frac{G}{\bar{G}}\right)^{\theta} \exp\left(-(\theta+1)\left(\frac{G}{\bar{G}}\right)\right)$$

4. There may be further charge spread after gas amplification, and the charge spread is expressed by pad response function $F_a(x_{ij})$ and its width is specified by σ_{PRF} . This process is detector-specific.

5. Finally the gas-amplified signals are readout with finite-width pads. We measure the coordinate of seed electrons with the charge centroid method.

Resolution Formula

Definition of spatial resolution

$$\sigma_{\bar{x}}^2 \equiv \int_{-1/2}^{+1/2} d\left(\frac{\tilde{x}}{w}\right) \int d\bar{x} P(\bar{x};\tilde{x}) (\bar{x}-\tilde{x})^2$$

Probability Distribution Function (PDF)

$$P(\bar{x};\tilde{x}) = \sum_{N=1}^{\infty} P_{PI}(N;\bar{n}\Delta Y) \prod_{i=1}^{N} \left[\int_{-\Delta Y/2}^{+\Delta Y/2} \frac{dy_i}{\Delta Y} \sum_{\substack{M_i=1\\Secondary \text{ ionization}}}^{\infty} P_{SI}(M_i) \right]_{j=1}^{M_i} \left(\int_{-\infty}^{+\infty} d\Delta y_{ij} P_D(\Delta y_{ij};\sigma_d) \int_{-\infty}^{+\infty} d\Delta x_{ij} P_D(\Delta x_{ij};\sigma_d) \int_{gas gain}^{d} \frac{G_{ij}}{\bar{G}} P_G\left(\frac{G_{ij}}{\bar{G}};\theta\right) \right)_{\text{Diffusion (y direction)}} \\ \times \int d\Delta Q_a P_E(\Delta Q_a;\sigma_E) \delta\left(Q_a - \left(\sum \sum_{\substack{M_i \in I \\ Diffusion (x direction)}}^{G_i} F_a(x_{ij}) R(y_{ij}) + \Delta Q_a\right)\right) \delta\left(\bar{x} - \frac{\sum_a Q_a(aw)}{\sum_a Q_a}\right)_{\text{Charge on a-th pad}} \right)$$

- $R(y_{ij})$: Pad response function in pad-row direction. This factor represents the efficiency for seed electrons to arrive at the pad-row in question.
 - ΔQ_a : Electronic noise charge on a-th pad.

Resolution Formula

General Expression

$$\begin{split} \sigma_{\bar{x}}^2 &\simeq \int_{-1/2}^{+1/2} d\left(\frac{\tilde{x}}{w}\right) \sum_{N=1}^{\infty} P_{PI}(N; \bar{n}\Delta Y) \prod_{i=1}^{N} \left[\int_{-\frac{\Delta Y}{2}}^{+\frac{\Delta Y}{2}} \frac{dy_i}{\Delta Y} \sum_{M_i=1}^{\infty} P_{SI}(M_i) \\ &\prod_{j=1}^{M_i} \left(\int d\left(\frac{G_{ij}}{\bar{G}}\right) P_G\left(\frac{G_{ij}}{\bar{G}}; \theta\right) \int_{-\infty}^{+\infty} dy_{ij} P_D(y_{ij} - y_i; \sigma_d) \right) \right] \\ &\times \left\{ \frac{\sum_{a,b} (abw^2) \sum_{i=1}^{N} \left[\langle F_a F_b \rangle_{\Delta x}^{y_i} - \langle F_a \rangle_{\Delta x}^{y_i} \langle F_b \rangle_{\Delta x}^{y_i} \right] \sum_{j=1}^{M_i} (G_{ij} R(y_{ij}))^2}{\left(\sum_{i=1}^{N} \sum_{j=1}^{M_i} G_{ij} R(y_{ij}) \right)^2} \\ &+ \left(\frac{\sum_a (aw) \sum_{i=1}^{N} \langle F_a \rangle_{\Delta x}^{y_i} \sum_{j=1}^{M_i} G_{ij} R(y_{ij})}{\sum_{i=1}^{N} \sum_{j=1}^{M_i} G_{ij} R(y_{ij})} - \tilde{x} \right)^2 \right\} \end{split}$$

Notation:	
$\left \langle g(\Delta x) \rangle_{\Delta x} := \int_{\infty}^{\infty} \frac{d\Delta x}{\sqrt{2\pi\sigma_d}} \exp\left[-\frac{1}{2} \left(\frac{\Delta x}{\sigma_d} \right)^2 \right] \right $	$g(\Delta x)$

In the Case of Perpendicular Tracks ($\phi=0$)

Sample Calculation I

[A] vanishes above $\sigma_{PR}/w \sim 0.4$ (corresponding to z~50mm in the figure). [B] is almost linear -->[B] $\approx [A]_{z=0} + \sigma_d^2$ approximation is valid almost all over the drift length.

Generalization to Inclined Tracks

Sample calculations II

Obtained Knowledge

Comparison with Data

Noise term is negligible.

[B] is dominant in these plots.

For further improvement, we need smaller diffusion constant, smaller gas gain fluctuation, or better ionization statistics.

Extrapolation

Hodoscope effect at short drift lengths is sizable for (a). (b) is a virtual case where we assumed wider σ_{PRF} . (b) can be realized if we optimize distance and electric field between amplification region.

Conclusion

- Our motivation was to demonstrate feasibility to achieve physics performance goal with TPC.
- In order to answer the question, we derived an analytic formula for spatial resolution.
- We clarified physical meanings of the 4 components that decide the spatial resolution.
- The formula is applicable to any MPGD TPC if we introduce a proper pad response function.
- Practically, we can find dominant component and thus we can efficiently find ways to improve spatial resolution. The analytic formula plays an important role to extrapolate results from small prototype TPC to a real-sized TPC.
- ✤ We will prepare a small paper for this topic.