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Overview of Basic Processes

1. Charged particles 1onize gas molecules. The electrons
generated in this process are called seed electrons. Drift Volume

- Primary Ionization Ppj (N ) : collision between incident particle and gas molecules

- Secondary Ionization Pg; (M)

: further ionization by primary ionized electrons

N : # of primary clusters =~ M : cluster size . {{‘c\e
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2. The seed electrons drift toward the readout plane while W i
diffusing. 2
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3. The Seed electrons are multiplied by a gas amplification
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4. There may be further charge spread after gas amplification,
and the charge spread is expressed by pad response function F,(z;;)

and 1ts width 1s specified by OPRF . AR ocition of
This process 1s detector-specific. seed electrons

5. Finally the gas-amplified signals are readout with finite-width pads.
We measure the coordinate of seed electrons with the charge centroid

method. ,



Resolution Formula

Definition of spatial resolution
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R(y; j) : Pad response function in pad-row direction.
This factor represents the eftficiency for seed electrons to arrive
at the pad-row in question.

AQa . Electronic IlOiSC charge on a,-th pad



Resolution Formula

General Expression
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In the Case of Perpendicular Tracks (¢=0)

1 Notation:
ot(eiw CaNep ) = L+ (B0 | (T e (e

Pad response function
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(aw) (Fo(Z 4+ Ax)) A, — 5:) |:> Visible only in short drift region.

a diffusion-averaged charge centroid

systematic term[S-shape, hodoscope]

systematics
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diffusion term

[B] represents resolution
per seed electron.
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displacement due to diffusion for a single electron

asymptotic formula Al._g ;
— ([A:=0 — % foroprr < W)

= hodoscope effect
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Neff Neff

Effective number of electrons.

Nt depends on 1onization statistics and gas gain
fluctuation.

This expression tells us why Nepr < (V) .
Experimentally we can obtain Neg from the
spatial resolution plot as a function of drift length.

':> Electronics noise effect. :



Sample Calculation I

Perpendicular track
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[A] vanishes above 0pr/w ~ 0.4 (corresponding to z~50mm in the figure).
[B] is almost linear -->[B] ~ [A].—¢ + 03 approximation is valid almost all over the drift length.
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Generalization to Inclined Tracks

Notation:

A
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v
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perpendicular tracks.
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Sample calculations 11
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[D] is invisible.
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[A] becomes smaller.

[D] becomes visible.

The 04/ L will not exceed 0.2 for the LC-TPC.

N, ef f 1s roughly constant in this range.

[D] term contribution is determined

not by Ness but by Nejss .
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Inclined track (tan(=0.18)
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Nefr < Nepr > 0x quickly deteriorates with angle.
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Obtained Knowledge
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Spatial resolution consists of 4

components. A
[A] : systematics due to finite pad 0X2
readout.

disappears if opR/w 2 0.4
(long drift length or inclined tracks)

General behaviors

|B] : diffusion effect
- Gas property
- We found that 0§ in the asymptotic formula
C«Q
02 =0+ —% 2 ... (D]
Nery N — €],
can be written as 0¢?=[A],-0/Nefr. Drift length

- We understood why Neff is much smaller than
average of seed electrons. (Neypy < (N) N )

[C] : electronic noise effect
[D] : primary cluster fluctuation

almost constant as a function of drift length if

¢ 1s fixed. It vanished for ¢p=0.
- We understood why Ne/sis much smaller than

effective number of seed electrons. (Neff < Neyy )




Comparison with Data
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Noise term is negligible.
[B] is dominant in these plots.
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For turther improvement, we need smaller diffusion constant, smaller

gas gain fluctuation, or better 1onization statistics.
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Extrapolation
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Hodoscope effect at short drift lengths is sizable for (a).
(b) is a virtual case where we assumed wider oprr. (b) can be realized
if we optimize distance and electric field between amplification region.



Conclusion
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Our motivation was to demonstrate feasibility to achieve physics

performance goal with TPC.

In order to answer the question, we derived an analytic formula for
spatial resolution.

We clarified physical meanings of the 4 components that decide the
spatial resolution.

The formula 1s applicable to any MPGD TPC if we introduce a proper

pad response function.

Practically, we can find dominant component and thus we can
efficiently find ways to improve spatial resolution. The analytic formula
plays an 1mportant role to extrapolate results from small prototype TPC

to a real-sized TPC.

We will prepare a small paper for this topic.
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