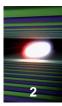
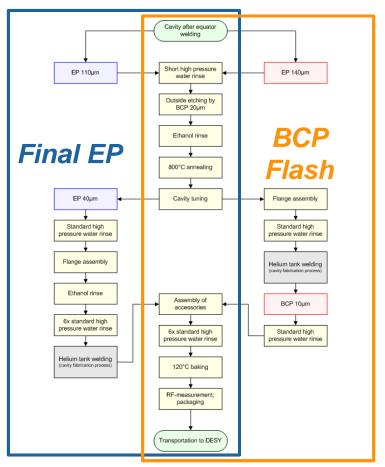


Strategy and Status of Reference Cavities for European XFEL

Detlef Reschke / DESY

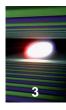




XFEL Introduction: Cavity Surface Preparation

- **Two schemes** for the final surface treatment:
 - E. Zanon: BCP Flash
 - Research Instr.: Final EP

- At each company:4 Cav's for set-up of infrastructure4 Cav's for qualification of infrastructure
- Close supervision of infrastructure, processes, procedures and handling by DESY + INFN Milano required
- No performance guarantee results in:
 - the risk of unexpected low gradient or field emission is with DESY
 - responsibility for re-treatment at DESY

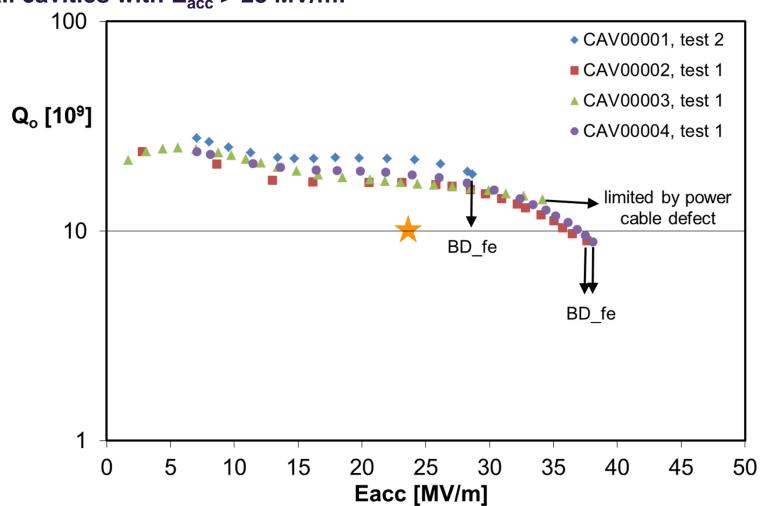


XFEL Strategy of Reference Cavities (RCV)

- Four reference cavities fabricated at each company
- First surface treatment and vertical acceptance test w/o He-tank at DESY (following the company preparation scheme: Final BCP for EZ; Final EP for RI)
- Stepwise qualification of surface treatment infrastructure at companies (after successful set-up of infrastructure with further dedicated cavities)

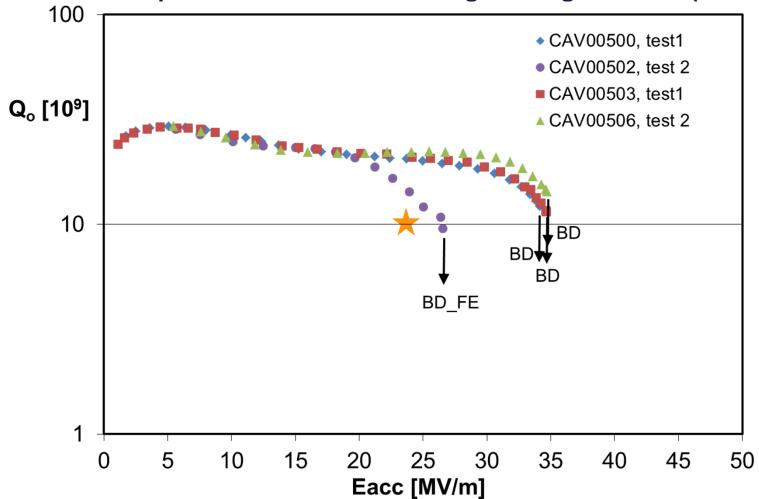
	RCV#0	RCV#1	RCV#2	RCV#3	RCV#4
Transportation to + from company	OK	OK	OK	OK	OK
+ slow venting / slow pumping (incl. leak check + RGA)		ok(EZ)/ not ok(RI)	ok(EZ) /x	ok(EZ) /x	ok(EZ) /x
+ disassembly of beam tube flange (short side), full HPR-cycle, drying, assembly of beam tube flange			not ok(EZ) /x	X	X
+ disassembly of all flanges, assembly of flanges, leak check				X	X
+ Final 40µm EP (RI)/Final 10µm BCP (EZ), first HPR, ethanol rinse, FMS, 120°C bake					X

Remark: Full preparation cycle will be done with CAV for set-up of infrastructure, only



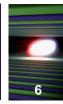
Starting Performance of Reference Cavities: RI (after surface preparation at DESY)

Acceptance test of four RI reference cavities successful: All cavities with $E_{acc} > 28 \text{ MV/m}!$



Starting Performance of Reference Cavities: EZ (after surface preparation at DESY)

- Three cavities vertical acceptance test successful (no FE)
- CAV00502 accepted for full treatment though strong radiation (field emission)



XFEL Status of RCV's

RI:

CAV00002, t1 => t2 (ok)**RCV#0:**

CAV00001, t2 => t3 (not ok) RCV#1:

RCV#1.1:

RCV#2:

RCV#3:

RCV#4:

EZ:

RCV#0: CAV00500, t1 => t2 (ok)

CAV00506, t2 => t3 (ok)RCV#1:

CAV00503, t2 => t3 (not ok) **RCV#2:**

CAV00500, t2 => t3 (test in preparation) RCV#2.1:

RCV#3:

RCV#4:

