

Achievement of 41MV/m by HIT-02 with KEK-HITACHI Collaboration

ILC Cavity Group Meeting

super-conducting History of HIT-02 at STF

 $\boldsymbol{\mathcal{U}}$

ж.

	date	content	comment
	8/Mar~	optical inspection	as received
	14/Mar	bulk EP	100µm removal
	19/Mar~	anneal	
	29/Mar~	optical inspection	many marks observed
	9/Apr	pre-tuning	99.1%
	17/Apr	light EP	20µm removal
	26/Apr	1st V.T.	35.2MV/m with heavy F.E.
	9/May~	optical inspection	many marks still existed
	14/May	F.F. check	99.1% → 96.5%
	29/May~	local grind	every iris & beam pipe
	15/Jun	bulk EP	50µm removal
	20/Jun~	optical inspection	no mark at iris
	25/Jun	pre-tuning	90.9% → 98.7%
	3/Jul	light EP	20µm removal
	12/Jul	2nd V.T.	40.9MV/m with No F.E.
	18/Jul	F.F. check	98.0% → 94.7%
201	18/Jul~	optical inspection	

Superconducting rf test facility Japan Record Updated by HIT-02-

In Ist V.T., gradient reached above 35MV/m, but heavy F.E. occurred. After that, they removed many marks at every iris by their original grinding method. In 2nd V.T., this cavity achieved the ILC specification with "No F.E". Surprisingly, they fabricated only two cavities!

ILC Cavity Group Meeting

ILC Cavity Group Meeting

Superconducting Many marks at iris observed in HIF-FF

In the optical inspection before 1st V.T. of HIT-02, many marks at every iris region were observed. Therefore, we predicted this cavity is affected by a heavy field emission, and it is actually true. After the 1st V.T., HITACHI company persons removed every marks from every iris by their original grinding technique.

In the 2nd V.T., this cavity experienced No field emission at 41MV/m!!

Original grinding technique by HITACHI

after bulk EP

after 1st V.T.

5-6 iris, $\theta = 216 \text{ deg.}$

ILC Cavity Group Meeting

after local grind + bulk EP

ILC Cavity Group Meeting

conducting ummary of Effect of Local Grind at STF

Cavity	Change of Gradient [MV/m]	Location of problematic defect	grind method	Limit cause in last V.T.
MHI#8	$\begin{array}{c} 16 \rightarrow 27 \\ (1^{\text{st}} \rightarrow 2^{\text{nd}}) \end{array}$	#2 equator (edge)	by machine	Cell #2 heating (other location)
MHI#10	$\begin{array}{c} 26 \rightarrow 20 \\ (2^{\text{nd}} \rightarrow 3^{\text{rd}}) \end{array}$	#1 & #9 equator (on bead)	by hand & machine	Cell #I heating (other <mark>new</mark> defect)
MHI#14	$13 \rightarrow >37 \text{ (a)} \Pi$ $(2^{nd} \rightarrow 3^{rd})$	iris #8-#9 (edge)	by hand	Power limit
	$23 \rightarrow >33$ $(1^{st} \rightarrow 2^{nd})$	#2 equator (on bead)	by machine	Cell #9 heating (new defect)
MHI#15	$\begin{array}{c} 29 \rightarrow > 36 \\ (2^{nd} \rightarrow 3^{rd}) \end{array}$	#9 equator (on bead)	by machine	Cell #9 heating due to heavy F.E. (new defect)
	$18 \rightarrow >36 \text{ (a)} \Pi$ $(3^{rd} \rightarrow 4^{th})$	iris #3-#4 (edge) iris #7-#8 (edge) iris #8-#9 (edge)	by hand & by machine	Power limit
MHI#16	21 → >34	#I equator (on bead)	by machine	HOM #2 pre-heating (transient state)

The local grinding technique is very important for the improvement of cavity performance!! 2012/9/4 ILC Cavity Group Meeting

8

conducting ummary of Effect of Local Grind at STE

Cavity	Change of Gradient [MV/m]	Location of problematic defect	grind method	Limit cause in last V.T.
MHI#18	$\begin{array}{c} 31 \rightarrow 10 \\ (1^{\text{st}} \rightarrow 2^{\text{nd}}) \end{array}$	beam pipes (on bead)	by machine	Cell #I heating
MHI#18	$10 \rightarrow ?$ $(2^{nd} \rightarrow 3^{rd})$	iris #2-#3 (edge)	by machine	Cell #2, 3 heating due to heavy F.E. (new defect)
MHI#19	$\begin{array}{c} 26 \rightarrow 37 \\ (1^{\text{st}} \rightarrow 2^{\text{nd}}) \end{array}$	iris #5-#6 (edge) beam pipes (on bead)	by machine	Cell #4, 5 heating
TOS#2	$31 \rightarrow >38$ $(1^{st} \rightarrow 2^{nd})$	#7 equator (on bead)	by machine	Cell #7 heating
TOS#2	$38 \rightarrow >39$ $(1^{st} \rightarrow 2^{nd})$	#8 away from equator (Not on bead)	by machine	Cell #8 heating
HIT#2	$>35 \rightarrow >41$ $(1^{st} \rightarrow 2^{nd})$	Every iris beam pipes	by hand with wood rod	Power limit with heavy field emission

The local grinding technique is very important for the improvement of cavity performance!!2012/9/4ILC Cavity Group Meeting

9

ILC Cavity Group Meeting

- ➢ HIT-02 updated the Japan record of the Cavity performance.
- The mechanically local grinding technique is useful for the improvement of the cavity performance (at least in STF).

More detailed result will be presented in TTC meeting at J-Lab.