

Hans Wenzel August 31th 2012

What's new

- Added install target make install: copies all necessary files, sets run time path etc.
- New example to automate the analysis:
 - response.cc: loops over all input files and produces nice histograms with response differnt particles
 - Ialength.cc: routine to find the original interaction. Then shower is characterized with respect to begin of the shower --> still needs optimization of the algorithmn.
- In the grid subdirectoy there are examples how to run CaTS on Fermi Grid
- Data sets:

detsim.fnal.gov:/ilc/sid/wenzel/Grid/CaTS-sheet-data-combined

• CaTS available on detsim.

Calorimeter response

Visible Energy/kinetic energy of incoming single particle

relative Energy response

Ionization response

Cerenkov relative Energy response

Cerenkov response (Number of Cerenkov photons)

August 31^{st} , 2012

Fermilab weekly du

BUT

• In case of protons and neutrons the energy deposited in the calorimeter is the kinetic energy: $E_{vis} \sim E_{kin}$.

• Some single particles deposit more than the kinetic energy since some of the invariant mass will be converted into energy when the particle decays $(\pi$'s, K's): $E_{vis} \sim E_{kin}$ + invariant mass.

• Antiprotons annihilate so:

- $E_{vis} \sim E_{kin} + 2 x$ invariant mass.
- Need to compare E_{vis} with the energy actually deposited in the calorimeter.

Cerenkov response (Number of Cerenkov photons)

August 31st , 2012

Fermilab weekly dual r

Ionization response

Ratio of Cerenkov/Ionization

resp.

August 31st , 2012

Fermilab weekly dual readout Meeting

Cerenkov relative Energy response

August 31st , 2012

Have fun!