Beam Delivery System Baseline Description and R&D in the Technical Design Phase

Karsten Buesser

13.12.2012 PAC Review

Beam Delivery System

- Main tasks:
 - measure linac beam and match it to the final focus
 - protect beamline and detector against mis-steered beams from the main linacs
 - remove beam halo to minimise detector backgrounds
 - measure and monitor key beam parameters (energy, polarisation) before and after the collisions
 - extract and dump the spent beams
- E_{cm,max}= 500 GeV, upgradable to 1 TeV (with more magnets)

Parameter	Value	Unit
Length (start to IP distance) per side	2254	m
Length of main (tune-up) extraction line	$300 \ (467)$	m
Max. Energy/beam (with more magnets)	$250 \ (500)$	${ m GeV}$
Distance from IP to first quad, L^* , for SiD / ILD	3.51 / 4.5	m
Crossing angle at the IP	14	mrad
Normalized emittance $\gamma \epsilon_{\rm x} / \gamma \epsilon_{\rm y}$	10000 / 35	nm
Nominal bunch length, σ_z	300	$\mu \mathrm{m}$
Preferred entrance train to train jitter	< 0.2 - 0.5	σ_y
Preferred entrance bunch to bunch jitter	< 0.1	σ_y
Typical nominal collimation aperture, x/y	6-10 / 30-60	beam sigma
Vacuum pressure level, near/far from IP	$0.1 \ / \ 5$	μPa

Beam Parameters

		Center-of-mass energy, $E_{\rm cm}$ (GeV)							
		Baseline			Upgrades				
Parameter		200	250	350	500	500	1000 (A1)	1000 (B1b)	Unit
Nominal bunch population	N	2.0	2.0	2.0	2.0	2.0	1.74	1.74	$\times 10^{10}$
Pulse frequency	$f_{ m rep}$	5	5	5	5	5	4	4	Hz
Bunches per pulse	N_{bunch}	1312	1312	1312	1312	2625	2450	2450	
Nominal horizontal beam size at IP	$\sigma^*_{ m x}$	904	729	684	474	474	481	335	nm
Nominal vertical beam size at IP	$\sigma_{ m y}^{*}$	7.8	7.7	5.9	5.9	5.9	2.8	2.7	nm
Nominal bunch length at IP	$\sigma^*_{ m z}$	0.3	0.3	0.3	0.3	0.3	0.250	0.225	mm
Energy spread at IP, e^-	$\delta E/E$	0.206	0.190	0.158	0.124	0.124	0.083	0.085	%
Energy spread at IP, e^-	$\delta E/E$	0.190	0.152	0.100	0.070	0.070	0.043	0.047	%
Horizontal beam divergence at IP	$ heta_{ m x}^{*}$	57	56	43	43	43	21	30	$\mu \mathrm{rad}$
Vertical beam divergence at IP	$ heta_{ m y}^*$	23	19	17	12	12	11	12	$\mu \mathrm{rad}$
Horizontal beta-function at IP	$\hat{eta_{\mathrm{x}}^*}$	16	13	16	11	11	22.6	11	mm
Vertical beta-function at IP	β_{y}^{*}	0.34	0.41	0.34	0.48	0.48	0.25	0.23	mm
Horizontal disruption parameter	$D_{\mathbf{x}}$	0.2	0.3	0.2	0.3	0.3	0.1	0.2	
Vertical disruption parameter	D_{y}	24.3	24.5	24.3	24.6	24.6	18.7	25.1	
Energy of single pulse	$E_{\rm pulse}$	420	526	736	1051	2103	3409	3409	kJ
Average beam power per beam	$P_{\rm ave}$	2.1	2.6	3.7	5.3	10.5	13.6	13.6	MW
Geometric luminosity	$L_{\rm geom}$	0.30	0.37	0.52	0.75	1.50	1.77	2.64	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$
– with enhancement factor		0.50	0.68	0.88	1.47	2.94	2.71	4.32	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$
Beamstrahlung parameter (av.)	Υ_{ave}	0.013	0.020	0.030	0.062	0.062	0.127	0.203	
Beamstrahlung parameter (max.)	$\Upsilon_{ m max}$	0.031	0.048	0.072	0.146	0.146	0.305	0.483	
Simulated luminosity (incl. waist shift)	L	0.56	0.75	1.0	1.8	3.6	3.6	4.9	$\times 10^{34} \text{cm}^{-2} \text{ s}^{-1}$
Luminosity fraction within 1%	$L_{1\%}/L$	91	87	77	58	58	59	45	%
Energy loss from BS	$\delta E_{\rm BS}$	0.65	0.97	1.9	4.5	4.5	5.6	10.5	%
e^+e^- pairs per bunch crossing	$n_{ m pairs}$	45	62	94	139	139	201	383	$ imes 10^3$
Pair energy per B.C.	$E_{\rm pairs}$	25	47	115	344	344	1338	3441	TeV

BDS Layout

Collimation System

- Collimation system removes beamhalo particles to reduce detector backgrounds
 - halo electrons/positrons
 - synchrotron radiation in final doublet
- BDS contains
 - 32 variable aperture collimators
 - 32 fixed aperture collimators
- Smallest apertures are 12 adjustable spoilers in collimation system
 - 0.6-1.0 X₀ Ti spoilers with longitudinal Be tapers
 - absorbers: 45-60 X₀

- Collimators are survivable
 - two/one full errant bunches (250/500 GeV/ beam)
- Collimation depths:
 - ~6-9 σ_x , 40-60 σ_y

Muon Background Suppression

- Muons from collimation system can reach the experimental hall:
 - background source for the detector
 - radiation protection issue
- Magnetised iron walls ("tunnel fillers") deflect muons deflect muons away from experimental hall
 - At collimated halo fraction of 1-2 x 10⁻⁵, only few muons per 150 bunches reach detector hall
- Muon shield upgradable to 19 m length, plus 9 m shield downstream
 - muon suppression capacity: 1 x 10⁻³ collimated beam fraction

Energy and Polarisation Measurement

- Polarimeters:
 - Compton scattering
 - Δp/p < 0.25%
- Spectrometers:
 - magnetic chicanes
 - $\Delta E/E < 100 \text{ ppm}$
- Dedicated chicanes upstream and downstream of the IP

Energy Chicane Polarimeter Chicane BVEX1P BVEX2P BVEX3P BVEX4P 10 meters z=120.682 m z=140.682 m z=152.682m z=172.682 m Cerenkov Detector 10 cm z= ~175 m Synchrotron Radiation Shielding for Cerenkov 155 m v=11. Detector Synchrotron Stripe Detector z= 147.682 m x=0 y=15.3cm BVEX3E Vacuum 25.2 BVEX5P BVEX6P z=55.282m Chamber BVEX7E GeV / =182.682 m z=202.682 m BVEX1E z=68.38 z=46.782 m ODEX3A z=22.829 m 2 mrad ene QFEX4A QDEX1A QFEX2B z=6.0 m z=15.5 n z=34.858 m 45/8 GeV Synchrotron-Radiation limit to Cherenkov Detector 90 deg cms 250 GeV ompto IP rad energ z=52.682 m z=65.782 m stripe Horizontal Bend Magnets Synchrotron Stripe Detector z=147.682 x=0 y= -19.85

Crab Crossing

- Beams need to do crab crossing to preserve luminosity when colliding with 14 mrad crossing angle
- Crab cavities developed and tested that apply kicks to the beams

TM110 Dipole Mode

Final Focus

- De-focus beams to IR size (474 nm x 5.9 nm)
- Local chomaticity correction using sextupoles next to final doublets

S/C Final Doublet Design

- Final doublet will be separated for push-pull operations
 - QF1 stays in tunnel
 - QD0 moves with detector
- Split QD0 model optimised for running at lower energies
- Allows for tighter collimation depths at $E_{\rm cm} < 300 \; GeV$
 - ~10% vertical increase
 - ~30% horizontal increase

Anti-Solenoids

without compensation $\sigma_v / \sigma_v (0)=32$

with compensation by antisolenoid $\sigma_y / \sigma_y(0) < 1.01$ Baseline Review, Oct/2011

IR coupling compensation

When detector solenoid overlaps QD0, coupling between y & x' and y & E causes large (30 – 190 times) increase of IP size (green=detector solenoid OFF, red=ON)

Even though traditional use of skew quads could reduce the effect, the local compensation of the fringe field (with a little skew tuning) is the most efficient way to ensure correction over wide range of beam energies

QD0 Support in Detectors

*Extracted from "QD0 Support Tube B.pptx," Bill Sporre email dated 27 September 2011.

24 October 2011 Hamburg, Germany

"ILC Final Doublet Technology," Brett Parker, BNL-SMD

QD0 Supports in Detectors

Independent Supports (Cavern, Pillars Platform)

Common Supports (Detector under mag.field)

High Coherence

Vibration Analysis

- Vibration limits for QD0
 magnets:
 - Δ(QD0(e+)-QD0(e-) < 50 nm during 1 ms pulse
- Beam transport simulations with different ground motion models take into account transfer functions of detector platform and QD0 support
- 50 nm goal can be achieved

ATF2 Final Focus Experiment

- ILC like final focus beamline with local chromaticity correction
- Primary goals:
 - achieve 37 nm vertical beam size at the IP
 - stabilise beam at that point at nanometre level

Parameter		Unit	ATF2	ILC
Beam energy	E	GeV	1.3	250
Effective focal length	L^*	m	1	3.5 - 4.5
Horizontal emittance	ϵ_x	nm	2	$1.0 \ (damping \ ring)$
Vertical emittance	ϵ_y	pm	12	$2 \ (damping \ ring)$
Horizontal IP β function	eta_x^*	mm	4	21
Vertical IP β function	β_y^*	mm	0.1	0.4
Horizontal IP dispersion divergence	η'_x		0.14	0.0094
Relative energy spread	σ_E	%	~ 0.1	~ 0.1
Vertical chromaticity	ξ_y		$\sim 10^4$	$\sim 10^4$
RMS horizontal beam size	σ^*_x	μm	2.8	0.655
RMS vertical beam size	σ_y^*	nm	37	5.7

ATF2 Final Focus Experiment

 IP Beam Size Monitor (aka Shintake Monitor) measurement (February 2012): 166.2 ± 6.7 nm:

• MC simulation of beam tuning procedure:

Final Focus Feedback FONT

- Intra-train IP feedback system
- Measures offsets and angles of outgoing beam
- Corrects incoming beam
- Beam-beam interction enhances nm level offsets to tens of mrad deflections
- Micron-resolution BPMs can detect offsets on sub-nm level
- Stripline kickers to correct the incoming beam
- Latency is crucial: ~4 bunch spacings possible
- BPMs and kickers need to be integrated in interaction region

processed in the digital feedback board. Analogue output correction signals are sent to a fast amplifier that kicker.

P1 P2 P3

FONT at ATF2

- 3 vertical BPMs
- 2 vertical stripline kickers
- Latency: 140 ns
- 3 bunches extracted from ATF2, 140-300 ns distance

• Jitters of second bunch:

Extraction Line

- Transports spent beams from IP to main beam dump
- Main issues:
 - minimise beam losses
 - keep space for beamstrahlung photon beam
 - provide space and optics for diagnostics (polarisation, energy)

Beam loss simulation (250 GeV beam):

Main Beam Dumps

- Two tune-up and two main beam dumps in BDS
- Designed for 18MW 500 GeV beams (TeV upgrade already foreseen)
- 30 X_0 10 bar water tank
- Beams are sweeped circularly over the 1mm thick Ti window
- Integrity of water system, dump and dump window are crucial
- Water activation products need to be filtered out
- H_2O radiolysis products are treated in catalyst filters

Interaction Region Site Differences for Detectors

Flat Sites Mountain Sites Access via vertical shaft: Access via horizontal tunnel: ~11 m diameter, ~1 km long, ~18 m diameter, ~100 m long ~10 % slope Assembly in CMS style: Modified assembly scheme: pre-assemble and test large detector parts assemble sub-detectors as far as possible max. part dim.: < ~3.5 kt, < ~17.5 m max. part dim.: < ~400 t, < ~9 mminimise underground work (~1a) long underground work (~3a) Installation schemes of detectors and Installation schemes of detector and machine de-coupled to large extent machine coupled at high level

Mountain Underground Sites

Flat Sites: Experimental Cavern

More will be discussed in MDI presentation tomorrow

Interaction Region Radiation Shielding

- Detectors are self-shielding w.r.t. maximum credible beam loss scenarios
- Adaptable shields between hall and detector ("pacman") required

Sanami et al., SLAC-RP-09-08

Summary

- A coherent design of the ILC Beam Delivery System has been developed for the TDR
 - centre-of mass energy reach 500 GeV, upgradable to 1 TeV with additional magnets
- Complete lattice description exists
- Properties have been studied in beam simulations
- Critical hardware systems have been studied on prototype level
 - QD0 design (warm and cold)
 - Crab cavity
 - Final focus studies at ATF2
 - Feedback studies at ATF2
 - (...)
- Interaction region design will be discussed in more detail in the Machine-Detector Interface presentation tomorrow.