Simulation/Reconstruction and Physics Benchmarking in the SiD DBD

Tim Barklow (SLAC)
for the SiD Detector Concept
Dec 14, 2012

Outline

- Personnel
- Simulation/Reconstruction
- Physics Benchmarking
- t̄̄H Philipp Roloff and Jan Strube (CERN)
- WW T.B.
- tt Malachi Schram (PNNL)
- $v \overline{\mathrm{v}} \mathrm{H}$ Homer Neal (SLAC)
- Summary

DBD Benchmarking + SimReco Personnel

- CERN
- Christian Grefe
- Stephane Poss
- Philipp Roloff
- Jan Strube
- DESY
- Alexander Grohsjen
- Marcel Stanitzki
- PNNL
- David Asner
- David Cowley
- Brock Erwin
- Malachi Schram
- SLAC

Tim Barklow

- Norman Graf
- Jeremy McCormick
- Homer Neal

Software Chain for the DBD

- Event Generation
- Whizard, physsim, Guineapig
- Detector response simulation (slic)
- Event Reconstruction
- Event overlay
- Icsim tracking
- slicPandora PFA
- LCFI vertex finding
- Analysis
- LCFI+ flavor tagging
- Everything else

Fully Simulated and Reconstructed Events

Process	\sqrt{s} (GeV)	\# Events $\left(10^{6}\right)$	\mathscr{L} ab^{-1}
$\mathrm{t} \overline{\mathrm{t} h}$	1000	0.4	52
$t \mathrm{t} Z, \mathrm{tt} b \mathrm{~b}$	1000	0.4	15
$t \mathrm{t}$	1000	1.0	2.0
$v \overline{\mathrm{v}} \mathrm{h}, \mathrm{h} \rightarrow \mathrm{b} \overline{\mathrm{b}}, \mathrm{c} \overline{\mathrm{c}}, \mathrm{WW}^{*}, g g$	1000	3.1	7.4
$v \overline{\mathrm{v}}, \mathrm{h} \rightarrow \mu^{+} \mu^{-}$	1000	0.5	6400
$e v W, e e Z, v v Z \rightarrow e v q q, e e q q, v v q q$	1000	4.0	0.034
$e e Z, v v Z, W W \rightarrow e e \mu \mu, v \nu \mu \mu$	1000	1.0	0.004
$W W$			
$W W$	1000	6.0	2.0
all other SM processes	1000	6.0	$1 \cdot 10^{5}-1.0$
$\mathrm{t} \overline{\mathrm{t}}$	500	2.0	1.0 per $m_{t o p}$
$\mathrm{t} \overline{\mathrm{t}}$ background SM processes	500	2.0	varies
TOTAL		26	

Table 11.1.2: Contents of "all Other SM Processes" Mixed File.

Process	$\mathscr{L} \mathrm{ab}^{-1}$ per pol.	$\begin{array}{r} \hline \text { \# Events }\left(10^{5}\right) \\ \mathrm{P}\left(e^{-} / e^{+}\right) \\ -0.8 /+0.2 \end{array}$	$\begin{array}{r} \text { \# Events }\left(10^{5}\right) \\ \mathrm{P}\left(e^{-} / e^{+}\right) \\ +0.8 /-0.2 \end{array}$	Weight
$\mathrm{e} \gamma \rightarrow \mathrm{e} \gamma$	$4 \cdot 10^{-5}$	0.5	0.5	$2.5 \cdot 10^{+4}$
$e^{+} e^{-} \rightarrow 2 f, 4 f$	0.034	3.7	2.0	29
$\mathrm{e} \gamma \rightarrow 3 f$	0.003	3.5	3.1	330
$\mathrm{e} \gamma \rightarrow 5 f$	0.25	3.1	2.1	4
$e^{+} e^{-} \rightarrow 6 f$	1.0	1.8	0.6	1
$\gamma \rightarrow 2 f$	0.001	5.7	5.7	7700
$\gamma \rightarrow 4 f$	0.083	2.5	2.5	12
$\gamma \rightarrow$ minijets:				
$4<p_{\mathrm{T}}<40 \mathrm{GeV}$	0.012	9.2	9.2	80-9000
$p_{\text {T }}>40 \mathrm{GeV}$	0.105	2.3	2.3	12

Beam-Induced Background

Beamstrahlung
Pair background 1 event per BX 450k particles

Generated by
GuineaPig
ascii \rightarrow hepevt \rightarrow stdhep

Merged with every
"physics"
event
MCParticles that don't make hits will be dropped

yy interactions
4.1 events per BX @ 1 TeV
1.7 events per BX at 500 GeV

Generated by Whizard

Angular distribution of background

Incoherent pairs affect mostly occupancies and tracking efficiencies
Hadrons have enough energy to reach the calorimeter

Measurement of the top Yukawa coupling

- Final states: - "6 jets": $t(\rightarrow q q b) \bar{t}(\rightarrow \mid v \bar{b}) H(\rightarrow b \bar{b}), m_{H}=125 \mathrm{GeV}$
- "8 jets": $t(\rightarrow q q b) \bar{t}(\rightarrow q q \bar{b}) H(\rightarrow b \bar{b}), m_{H}=125 \mathrm{GeV}$
- Motivation: Cross section for t̄̄H production is directly sensitive to the top Yukawa coupling, y_{t} :

Cross sections

Monte Carlo samples

Type	Final state	$\mathrm{P}\left(e^{-}\right)$	$\mathrm{P}\left(e^{+}\right)$	Cross-section [\times BR] (fb)
Signal	tth (8 jets)	-80\%	+20\%	0.87
Signal	tth (8 jets)	+80\%	-20\%	0.44
Signal	tth (6 jets)	-80\%	+20\%	0.84
Signal	tt̄h (6 jets)	+80\%	-20\%	0.42
Background	other tth	-80\%	+20\%	1.59
Background	other tth	+80\%	-20\%	0.80
Background	tṫZ	-80\%	+20\%	6.92
Background	tt Z	+80\%	-20\%	2.61
Background	$\mathrm{t} \overline{\mathrm{t}} g^{*} \rightarrow \mathrm{t} \mathrm{t} \mathrm{b} \overline{\mathrm{b}}$	-80\%	+20\%	1.72
Background	$\mathrm{t} \overline{\mathrm{t}} \mathrm{g}^{*} \rightarrow \mathrm{t} \mathrm{t} \mathrm{b} \overline{\mathrm{b}}$	+80\%	-20\%	0.86
Background	$t \bar{t}$	-80\%	+20\%	449
Background	t ${ }_{\text {t }}$	+80\%	-20\%	170

Event reconstruction I

1.) Remove all PFOs with:

- $\mathrm{p}_{\mathrm{T}}<500 \mathrm{MeV}$
- $\Theta<20^{\circ}$
- $\Theta>160^{\circ}$
2.) Remove identified isolated leptons from PFO list

8jet signal event

Event reconstruction II

3.) Perform jet clustering using the Durham algorithm in the exclusive mode with 6 or 8 jets
4.) Obtain b-tag value for each jet using LCFIPlus
5.) Group jets into $W^{ \pm}, H$ and top pairs
by minimising:
6jets: $\frac{\left(M_{12}-M_{W^{ \pm}}\right)^{2}}{\sigma_{W^{ \pm}}^{2}}+\frac{\left(M_{123}-M_{t}\right)^{2}}{\sigma_{t}^{2}}+\frac{\left(M_{45}-M_{H}\right)^{2}}{\sigma_{H}^{2}}$
8jets:
$\frac{\left(M_{12}-M_{W^{ \pm}}\right)^{2}}{\sigma_{W^{ \pm}}^{2}}+\frac{\left(M_{123}-M_{t}\right)^{2}}{\sigma_{t}^{2}}+\frac{\left(M_{45}-M_{W^{ \pm}}\right)^{2}}{\sigma_{W^{ \pm}}^{2}}+\frac{\left(M_{456}-M_{t}\right)^{2}}{\sigma_{t}^{2}}+\frac{\left(M_{78}-M_{H}\right)^{2}}{\sigma_{H}^{2}}$

Event selection

Signal events were selected using Boosted Decision Trees (BDTs) as implemented in TMVA.

Input variables for the 6-jet final state:
M_{12}, M_{123}, M_{45}, four highest b-tags values, Thrust, $Y_{5 \rightarrow 6}$,
number isolated leptons, number of PFOs, missing transverse momentum, visible energy
$\rightarrow 13$ variables
Input variables for the 8-jet final state:
$M_{12}, M_{123}, M_{45}, M_{456}, M_{78}$, four highest b-tags values, Thrust, $Y_{7 \rightarrow 8}$,
number isolated leptons, number of PFOs, missing transverse momentum, visible energy
$\rightarrow 15$ variables

6 jets: selection variables I

- tt̄ background scaled by 0.01
- $Y_{5 \rightarrow 6}$ used instead of $Y_{4 \rightarrow 5}$ or $Y_{6 \rightarrow 7}$

$L_{i n t}=1 a b^{-1}$

6 jets: b-tag values

- tt̄ background scaled by 0.01
- Signal has 4 b-jets, part of the background samples contain only 2 b-jets

$$
L_{\mathrm{int}}=1 \mathrm{ab}^{-1}
$$

6 jets: W$/$ /top/Higgs masses

- $t \bar{t}$ background scaled by 0.01
- The background distributions are broader than the signal peaks

$$
L_{i n t}=1 a b^{-1}
$$

6 jets: selection variables II

- tt̄ background scaled by 0.01

8 jets: W ${ }^{+} /$top/Higgs masses

- ttt background scaled by 0.01
- The background distributions are broader than the signal peaks

$$
L_{i n t}=1 a b^{-1}
$$

BDT outputs and results

8 jets: \quad BDT >0.0363

Using cut on BDT output with best $S /(S+B)^{1 / 2}$
$\Delta \sigma / \sigma=13.6 \% \rightarrow \Delta y_{t} / y \approx 6.8 \%$

$$
\Delta \sigma / \sigma=12.3 \% \rightarrow \Delta y_{t} / y \approx 6.2 \%
$$

Combined: $\Delta y_{t} / y \approx 4.6 \% \quad 500 \mathrm{fb}^{-1}$ each pol. $L_{\text {int }}=1 \mathrm{ab}^{-1}$

$$
\Delta y_{t} / y \approx 4.1 \% \text { all } 1 \mathbf{a b}^{-1} \text { at } \mathbf{P}\left(e^{-} / e^{+}\right)=-.8 /+.2
$$

$e^{+} e^{-} \rightarrow W^{+} W^{-} \quad \sqrt{s}=\mathbf{1} \mathbf{~ T e V}$

Four Jet Topology $\quad(0.8<\cos \Theta<1$ only)

Two Jets Plus Lepton Topology ($0.8<\cos \Theta<1$ and $-1<\cos \Theta<1$)

Beam Polarization Measurement Only

Use 50\%/50\% lumi at $\mathrm{Pol}\left(e^{-} / e^{+}\right)=(-0.8 /+0.2) /(+0.8 /-0.2)$

$$
e^{+} e^{-} \rightarrow W^{+} W^{-} \quad \sqrt{s}=1 \mathbf{~ T e V}
$$

Count events in bins of $(\cos \Theta, \cos \theta)$
where Θ is polar angle of W^{-}in lab frame and
θ is either the polar angle of the lepton in W^{-}rest frame or an average of all four quark angles in their parent W rest frame in the case of the fully hadronic topology.

To account for detector efficiency and resolution do template fit of parameters $a \& b$ where for each bin i

$$
\begin{aligned}
& N_{i}=a \int d \vec{x}_{i} d \vec{x}^{\prime} \eta\left(\vec{x}^{\prime}\right) \Omega\left(\vec{x}, \vec{x}^{\prime}\right) \frac{d \sigma_{L R}}{d \vec{x}^{\prime}}+b \int d \vec{x}_{i} d \vec{x}^{\prime} \eta\left(\vec{x}^{\prime}\right) \Omega\left(\vec{x}, \vec{x}^{\prime}\right) \frac{d \sigma_{R L}}{d \vec{x}^{\prime}} \\
& a=\frac{\left(1-P\left(e^{-}\right)\right)\left(1+P\left(e^{+}\right)\right)}{4} \\
& b=\frac{\left(1+P\left(e^{-}\right)\right)\left(1-P\left(e^{+}\right)\right)}{4}
\end{aligned}
$$

(then convert a \& b meas. to $P\left(e^{-}\right) \& P\left(e^{+}\right)$)

$$
e^{+} e^{-} \rightarrow W^{+} W^{-} \quad \sqrt{s}=1 \mathbf{~ T e V}
$$

$$
P\left(e^{-} / e^{+}\right)=(-1 /+1)
$$

$$
P\left(e^{-} / e^{+}\right)=(+1 /-1)
$$

Four Jet Topology $\quad(0.8<\cos \Theta<1$ only)

Two Jets Plus Lepton Topology ($0.8<\cos \Theta<1$ and $-1<\cos \Theta<1$)

$$
\text { Analysis for } e^{+} e^{-} \rightarrow W W \rightarrow v \mu q q
$$

Require 1 isolated muon, $\mathbf{0}$ isolated electron \& 0 isolated photon

Set isolated muon aside and perform jet analysis on remaining PFO's using the kt-algorithm in exclusive mode with 2 jets with $\Delta \mathrm{R}=0.7$.
This algorithm will identify beams jets and group everything else into 2 jets.

The 2 jets that remain after discarding the beam jets represent the jets from the hadronically decaying W .
Require

$$
\begin{aligned}
& N_{\text {PFO }}(\text { remaining })>12 \\
& 60<M_{2 j}<100 \mathrm{GeV} \quad E_{2 j}>300 \mathrm{GeV}
\end{aligned}
$$

$$
e^{+} e^{-} \rightarrow W W \rightarrow v \mu q q
$$

$$
e^{+} e^{-} \rightarrow W W \rightarrow \nu \mu q q
$$

True angles

Reco angles

$$
e^{+} e^{-} \rightarrow W W \rightarrow v e q q
$$

Electron background very different from muon

$p_{T}\left(e^{-}\right.$that radiated Weiz-Will $\left.\gamma\right)(\mathrm{GeV})$

$$
e^{+} e^{-} \rightarrow W W \rightarrow v e q q
$$

Compton scattering problem:
$\gamma e^{+} \rightarrow e^{+} Z$
leads to events with e^{+} / e^{-} in backwards direction.

For e^{+} / e^{-}only require $\boldsymbol{\operatorname { c o s }} \Theta>-0.9$

$$
e^{+} e^{-} \rightarrow W W \rightarrow v / q q
$$

Table 11.4.3: Number of events passing semileptonic $\mathrm{W}^{+} \mathrm{W}^{-}$cuts for $500 \mathrm{fb}^{-1}$ luminosity.

Type	Solid Angle	$\mathrm{P}\left(e^{-}\right)$	$\mathrm{P}\left(e^{+}\right)$	Number of events
Signal	$0.8<\cos \Theta<1.0$	-80%	$+20 \%$	122300
Signal	$-1<\cos \Theta<0.8$	-80%	$+20 \%$	37040
Signal	$0.8<\cos \Theta<1.0$	$+80 \%$	-20%	8490
Signal	$-1<\cos \Theta<0.8$	$+80 \%$	-20%	3216
Background	$0.8<\cos \Theta<1.0$	-80%	$+20 \%$	3547
Background	$-1<\cos \Theta<0.8$	-80%	$+20 \%$	5050
Background	$0.8<\cos \Theta<1.0$	$+80 \%$	-20%	3985
Background	$-1<\cos \Theta<0.8$	$+80 \%$	-20%	3699

Require 0 isolated muons, electrons, \& photons

Perform jet analysis using the kt-algorithm in exclusive mode with 4 jets with $\Delta R=0.7$. This algorithm will identify beams jets and group everything else into 4 jets.

The 4 jets are divided into two 2-jets systems using
a chisquare minimization similar to that used in $\mathbf{t} \overline{\mathrm{t}}$ analysis

Require

$$
\begin{aligned}
& N_{\text {PFO }}>28 \\
& 55<M_{2 j}<105 \mathrm{GeV} \quad E_{4 j}>600 \mathrm{GeV}
\end{aligned}
$$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow W W \rightarrow q q q q
$$

Table 11.4.4: Number of events passing fully hadronic $\mathrm{W}^{+} \mathrm{W}^{-}$cuts for $500 \mathrm{fb}^{-1}$ luminosity.

Type	Solid Angle	$\mathrm{P}\left(e^{-}\right)$	$\mathrm{P}\left(e^{+}\right)$	Number of events
Signal	$0.8<\|\cos \Theta\|<1.0$	-80%	$+20 \%$	293250
Signal	$0.8<\|\cos \Theta\|<1.0$	$+80 \%$	-20%	23720
Background	$0.8<\|\cos \Theta\|<1.0$	-80%	$+20 \%$	32971
Background	$0.8<\|\cos \Theta\|<1.0$	$+80 \%$	-20%	7851

$$
e^{+} e^{-} \rightarrow W^{+} W^{-} \quad \sqrt{s}=1 \mathbf{~ T e V}
$$

Beam Polarisation Measurements

The effective polarisation parameters a and b are extracted by counting events in bins of $(\cos \Theta, \cos \theta)$ and fitting for a and b with a linear least squares fit:

$$
\chi^{2}=\sum_{i} \frac{\left(N_{i}-\left(a \mu_{i}+b v_{i}\right) L\right)^{2}}{N_{i}}
$$

where N_{i} is the number of events in bin i, L is the integrated luminosity

$$
\begin{aligned}
\mu_{i} & =\int d \vec{x}_{i} d \overrightarrow{x^{\prime}} \eta\left(\overrightarrow{x^{\prime}}\right) \Omega\left(\vec{x}_{i}, \overrightarrow{x^{\prime}}\right) \frac{d \sigma_{L R}}{d \overrightarrow{x^{\prime}}} \\
v_{i} & =\int d \vec{x}_{i} d \overrightarrow{x^{\prime}} \eta\left(\overrightarrow{x^{\prime}}\right) \Omega\left(\vec{x}_{i}, \overrightarrow{x^{\prime}}\right) \frac{d \sigma_{R L}}{d \overrightarrow{x^{\prime}}}
\end{aligned}
$$

Let $M_{k i}$ be the number of events in bin i from a Monte Carlo sample produced with effective beam polarisations a_{k} and b_{k} and luminosity L_{k}.

$$
\mu_{i}=\frac{1}{a_{1} b_{2}-a_{2} b_{2}}\left[b_{2} \frac{M_{1 i}}{L_{1}}-b_{1} \frac{M_{2 i}}{L_{2}}\right], \quad v_{i}=\frac{1}{a_{1} b_{2}-a_{2} b_{2}}\left[-a_{2} \frac{M_{1 i}}{L_{1}}+a_{1} \frac{M_{2 i}}{L_{2}}\right] .
$$

$$
e^{+} e^{-} \rightarrow W^{+} W^{-} \quad \sqrt{s}=1 \mathrm{TeV}
$$

Table 11.4.5: Polarisation errors assuming $500 \mathrm{fb}^{-1}$ luminosity for each initial state polarisation configuration.

$\cos \Theta \operatorname{range}$	$P_{\mathrm{e}^{-}}, P_{\mathrm{e}^{+}}$	Δa	Δb	$\Delta P_{\mathrm{e}^{-}}$	$\Delta P_{\mathrm{e}^{+}}$
$0.8<\cos \Theta<1$	$-0.8,+0.2$	0.0011	0.62	3.77	2.51
$0.8<\cos \Theta<1$	$+0.8,-0.2$	0.00030	0.20	0.13	0.27
$-1<\cos \Theta<1$	$-0.8,+0.2$	0.0010	0.084	0.51	0.32
$-1<\cos \Theta<1$	$+0.8,-0.2$	0.00027	0.032	0.020	0.08
$\cos \Theta \operatorname{range}$	$P_{\mathrm{e}^{-}}, P_{\mathrm{e}^{+}}$	$\Delta \alpha$	$\Delta \beta$	$\Delta\left\|P_{\mathrm{e}^{-}}\right\|$	$\Delta\left\|P_{\mathrm{e}^{+}}\right\|$
$-1<\cos \Theta<1$	sum	0.00097	0.00027	0.0017	0.0027

Notes on these errors:

- Results obtained before Weis-Williams Whizard problem identified. Electron eff. will be higher when final result is calculated leading to improved results.
- Background events do not have a polarization dependence in these results. When background polarization dependence is included Δb improves a lot for
$-1<\cos \Theta<1$ because of small WW cross sec. for $\operatorname{Pol}\left(e^{-} / e^{+}\right)=+1 /-1$.

$t \bar{t}$ at $\sqrt{s}=500 \mathrm{GeV}$

preselection

- Reject events with isolated lepton
- Requires 6 jets
-Sum of the jet energy > 400 GeV
- Track multiplicity > 30
- Jet particle constituents > 5
-Sum of the jet particle constituents >80

$$
e^{+} e^{-} \rightarrow t \bar{t}
$$

Further Event Selection $e^{+} e^{-} \rightarrow t \bar{t}$

Using LCFI to identify b-jets require one jet with a b-tag>0.9 and one other jet with b-tag>0.4

Associate other jets with \mathbf{W} bosons and perform kinematic fit using these constraints. Use a χ^{2} minimization to resolve combinatorics.

Table 11.4.1: Top mass kinematic constraints.

$m\left(\right.$ top $\left._{1}\right)$	$=$	$m\left(\right.$ top $\left._{2}\right)$
$m\left(W_{1}\right)$	$=$	80.4 GeV
$m\left(W_{2}\right)$	$=$	80.4 GeV
$m\left(b_{1}\right)$	$=$	5.8 GeV
$m\left(b_{2}\right)$	$=$	5.8 GeV
$E_{\text {tot }}$	$=$	\sqrt{s}
$\vec{p}_{\text {tot }}$	$=$	0

$$
e^{+} e^{-} \rightarrow t \bar{t}
$$

Figure 11.4.9: Mass distribution of the W boson candidates (left) and top quark candidates (right).

For a top mass cut of $145 \mathrm{GeV}<M_{t}<195 \mathrm{GeV}$ we obtain an efficiency of $27.2 \pm 0.1 \%$, and a cross section error of $354.3 \pm 1.4 \mathrm{fb}$ for the polarization $P\left(e^{-} / e^{+}\right)=+0.8 /-0.2$

$$
e^{+} e^{-} \rightarrow t \bar{t}
$$

$$
A_{F B}=\frac{\sigma\left(\theta<90^{\circ}\right)-\sigma\left(\theta>90^{\circ}\right)}{\sigma\left(\theta<90^{\circ}\right)+\sigma\left(\theta>90^{\circ}\right)}
$$

Define vertex charge $\&$ jet charge by $\quad Q=\frac{\sum_{j} p_{j}^{k} Q_{j}}{\sum_{j} p_{j}^{k}}$
Use single discriminant $\quad C=\frac{1-r}{1+r} ; \quad r=\prod_{i} \frac{f_{i}^{\bar{b}}\left(x_{i}\right)}{f_{i}^{b}\left(x_{i}\right)}$

Results on $A_{F B}$ available soon.

Higgs $\sigma \times \mathbf{B R}, H \rightarrow b b, c c, W W^{*}, g g, \mu^{+} \mu^{-}$
 using $e^{+} e^{-} \rightarrow v \bar{v} H$ at $\sqrt{s}=1 \mathrm{TeV}$

$$
\text { Analysis for } e^{+} e^{-} \rightarrow v \bar{v} H
$$

Require
$100<E($ visible $)<400 \mathrm{GeV} \quad 20<p_{T}($ visible $)<250 \mathrm{GeV}$

Perform jet analysis using the kt-algorithm in
exclusive mode with 2 jets with $\Delta R=1.5$.

Fisher discriminants as implemented in TMVA are used to to distinguish a Higgs decay mode from non-Higgs background and other Higgs decay modes. Inputs to the Fisher discriminants include

- Number of good tracks
- Number of isolated leptons
- b and c flavor tagging outputs
- mass of the 2-jet system and individual jet masses
- polar angles of jets

$$
e^{+} e^{-} \rightarrow v \bar{\nu} H
$$

Table 11.4.1: Simulated data samples used for the $v_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}} \mathrm{h}$ analysis.

Process	Polarization	\#events
higgs_ffh_nomu	$-80 /+20$	$1,544,398$
evW_eeZ_vvZ_semileptonic	$-80 /+20$	$6,570,292$
all_other_SM_background	$-80 /+20$	$3,232,672$

The $\Delta \sigma \times B R$ numbers in the Nov 30 draft were way off because event weights were not used (typically 0.3 for signal and 1-1000 for background). The table below will be filled in soon. Our apologies for the confusion.

Table 11.4.2: Relative uncertainties on the Higgs $\sigma \times B R$ expected for an integrated luminosity of $1 \mathrm{ab}^{-1}$ at $\sqrt{s}=1 \mathrm{TeV}$ using the SiD detector.

$\mathrm{h} \rightarrow$	\#events	$\Delta(\sigma \times B R)$
$\mathrm{b} \overline{\mathrm{b}}$	xxx	xxx
$\mathrm{c} \overline{\mathrm{c}}$	xxx	xxx
$\mathrm{W}^{+} \mathrm{W}^{-}$	xxx	xxx
$g g$	xxx	xxx

Summary

- Analyses for the tth, WW, $\mathrm{t} \overline{\mathrm{t}}$, and $\nu \overline{\mathrm{v}} \mathrm{H}$ DBD benchmarks using full simulation and reconstruction for the SiD detector have been presented.
- The top Yukawa coupling results are essentially final
- WW beam polarization results will receive an update with improved electron channel efficiency and the inclusion of background polarization dependence
- Additional results for tt and the Higgs $\sigma X B R$ numbers will be available soon.

