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• Introduction  
– Detector design   
– Design Study Organization   
– DBD Editors 

• Areas of SiD included in DBD 
– summary for detector components 

• Simulation/reconstruction, PFA, Benchmarking  
– see next talk by Tim Barklow 

• SiD Costing 
• Summary 
• This is a short talk about a large design study – summarize main 

features of SiD, current status, and a word about the future. 
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Outline 
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SiD Detector overview 
● SID Rationale 

– A compact, cost-constrained detector designed to make 
precision measurements and be sensitive to a wide range of 
new phenomena 

● Design choices 
– Compact design with 5 T field. 
– Robust all-silicon vertexing and tracking system with excellent 

momentum resolution 
– Time-stamping for single bunch crossings. 
– Highly granular Calorimetry optimized for Particle Flow 
– Iron flux return/muon identifier is part of  the SiD self-shielding 
– Detector is designed for rapid push-pull operation 
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SiD Detailed Baseline Design 

Marcel Stanitzki, LCWS 2012 
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Creating the SiD DBD 

Main  DBD Editors: 
Phil Burrows (Oxford) 
Lucie Linssen (CERN) 

Mark Oreglia  (UChicago) 
Marcel Stanitzki (DESY) 

Andy White (UTA) 
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• The DBD is a detailed description of a detector design concept, 
with examples of performance for selected ILC physics processes. 
 

• The DBD is not at the level of a TDR   
- only limited engineering effort was available. 

 
• It includes a large R&D effort, but this is not yet complete. 
 

• Baseline choices have been made for all subsystems except the 
vertex detector; options are also included. 
 

• We provide a full cost evaluation for the detector. 

SiD Detailed Baseline Design 
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The SiD DBD Detector 
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The SiD DBD Detector 
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The SiD DBD Detector - parameters 
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Vertex Detector 

● Requirements 
– < 5 µm hit resolution 
–  ~ 0.1 % X0 per layer 
– < 130 µW/mm2 

– Single bunch timing resolution 

• ILC bunch timing and low radiation 
environment allows very light, low 
power vertex system 
• Pulsed power/DC-DC conversion 
• Forced dry air cooling 

Split-cylinder support 
structures 
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Vertex Detector 
No preferred technology – many choices/still an evolving picture 

Example 3-D/active edge design: 
Barrel  

Readout and power 
connections on top layer 

Disk tiling 
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Vertex Detector – R&D 
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VIP 2a – 3 tier MIT-LL VIP 3D chip 

Chronopixel V1 

VIP  
• VIP2a (3-tier MIT-LL chip) is produced 
and tested 
• Both analog and digital sections work 
well, solving problems found in VIP1 
• VIP2b (2-Tier Tezzaron/Global 
foundries) is in process.  
• Initial tests of 2D test devices shows 
good analog performance. 
noise = 8e + 0.5 e/ fF 
• Sensors for 3D integration of VIP2b 
produced and tested. 

 

VIP 2b noise. 

Chronopixel  
•Measured noise of 24 e, specification 
is 25 e. 
• Sensitivity measured to be 35.7μV/e, 
exceeding design spec of 10μV/e. 
• Comparator accuracy 3 times worse 
then spec, need to improve this in 
prototype 2. 
• Sensors leakage currents (1.8·10-

8A/cm2) is not a problem. 
•Readout time satisfactory 
•Prototype 2 late 2011, 65nm TSMC 

 

Next: Full sized ladder for barrel, wedge segment for disks, support structures, 
cooling. power pulsing, cabling. 



ILC Physics requires: 
 - excellent momentum resolution over wide PT range 
 -  high point precision, mechanical stability for high PT 
 - low material budget for low PT 
 - high efficiency for all momenta/angles 
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Silicon Tracking 

->   Performance goals 
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Silicon Tracking 

Below 20% X0 
for whole 
VTX/TRK 
system 
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Silicon Tracking 
Design features: 
 - Single-sided silicon micro-strips, double metal layer 
 - KPiX readout, with time stamping 
 - Gas cooling 
 - DC-DC converters supply high instantaneous current 

Realization: 

Barrel silicon module 
300 µm Si, 25(50) µm 
sense(readout) pitch Barrel sensor with prototype 

pigtail cable. 
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Silicon Tracking 
Performance - efficiency 

Single muons 

Di-jet  Z’  
(M = 1 Tev/c2) 
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Silicon Tracking 
Performance  

Momentum resolution 

Impact 
parameter 
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Tracker Alignment 
SiD Alignment is based on: 
 
1. Small number of robust, rigid elements 

• Minimize deviations 
2. Precise positioning of smaller components during fabrication 

and assembly 
• Achieving ~ 20 µm (or better) precision 

3. Real-time monitoring of alignment changes, including during 
push-pull moves 
• Using FSI, laser-tracks, and strain measurements using fibers 
• Building on ATLAS, CMS and AMS experiences 

4. Track-based alignment for final precision 
• For each data-taking period 
• Overall accuracy ~ 3 µm (Tracker)  / ~ 1 µm (Vertex)  
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Calorimetry 

SiD Calorimetry is designed for the PFA approach: 
 ECAL and HCAL must be “imaging”: high granularity 
 Small Moliere radius for ECAL – separate e-/charged h 
 Minimize gap between tracker and ECAL 
 Sufficient overall depth 

● SiD ECAL 
– Tungsten absorber 
– 20+10 layers 
– 20 x 0.64 + 10 x 1.30 X0 

● Baseline Readout using 
– 5x5 mm2 silicon pads 

● SiD HCAL 
– Steel Absorber 

– 40 layers 

– 4.5 λi 

● Baseline readout  
– 1x1 cm2 RPCs  
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SiD Baseline choices 
All other options (except a scintillator ECAL) are being considered 

PFA Calorimeter 

ECAL HCAL 

Tungsten Tungsten Iron 

Silicon  Scintillator 

analog analog digital analog digital 

MAPS  Scintillator RPC  GEM  Micro 
megas 
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Electromagnetic Calorimetry 
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Electromagnetic Calorimetry 

Option: Monolithic  
Active Pixels (MAPS) 
50µm x 50µm pixels 
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Hadronic Calorimetry 

Steel absorber 
40-layers, 4.5 λI  
Tracking calorimeter 
RPC Baseline. 1x1 cm2 cells 
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Hadronic Calorimetry 
Default “two-glass” RPC 

Special “one-glass” RPC 

 Baseline: RPC DHCAL 

• 2-glass design can operate at good efficiency and low multiplicity 
• 1-glass design has flat multiplicity vs. efficiency  - still being 

understood/under development) 
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Hadronic Calorimetry 
 Baseline: RPC DHCAL 

Test beam with  1 m3 stack 
Largest Calorimeter by channel count 
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Hadronic Calorimetry 
 Baseline: RPC DHCAL 

– The RPC technology is a great candidate for the readout of a highly 
segmented calorimeter. 

– The dark rate in the DHCAL is very low  

– The response is linear up to about 30 GeV/c. 
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Hadronic Calorimetry 
 Options: GEM, Micromegas, Scintillator  

GEM 
Micromegas 

Scintillator 
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Muon System 
- Muon identification/hadron rejection 
- Flux return 
- Tail catcher for calorimeter system 
- Low rates/large area 

10 layers 
Pion misidentification 
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Muon System 
Major change of baseline vs. LOI: 
                         Scintillating strips/wavelength shifting fibers 

(RPC remains as an option) 

Development of system to position 
SiPM at the end of a fiber 
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Magnet System 

- 5 T design based on 4 T CMS solenoid 
- Muon system flux return 

- ANSYS 2-D and 3-D models used in 
design work 
- Benefitted from cryo engineering at SLAC 
and BNL and advances in computation 
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Electronics and DAQ - Rates 
• SiD Electronics and DAQ built around KPiX approach 

→Maximize common components  
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Detector Integration and MDI 

3 m thick concrete push-pull 
platform: 
- 30 m travel for detector swap 
- ~1 mm max static deflection at 
detector support points 

IR Hall configuration (vertical access) 
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Detector Assembly - examples 

Horizontal access – moving the 
solenoid 

Assembling the Hadron Calorimeter 
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Beampipe/Forward Region 
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Beampipe/Forward Region 

LumiCal   - integrated luminosity and 
luminosity spectrum 
 
BeamCal – small angle coverage (with 
LumiCal), instantaneous luminosity 

Dedicated ASIC (Bean chip) for 
high luminosity region 
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SiD Costs 
- Costing is based on SiD Parametric Model 
- Basic items have agreed cost (SiD, ILD and CLIC): 
  
 
 
 
- Costs in 2008 U.S. $ 
                                        M&S   315 $M 
                                        Contingency  127 $M 
                                        Labor  748 $M 
 
- Model allows exploration of sensitivity to cost increase and 
detector parameter changes 
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SiD Costs 
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SiD Costs 

Note: For the LOI an optimal cost region was found near the 
baseline parameters: 

 Rtracker = 1.25 m,  B = 5 T,  HCAL λI = 4.5 
Cost of Tungsten HCAL has been evaluated (requested by IDAG) 

No potential savings  
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SiD Production Status 

• 3000 CPU days and 79000 Jobs  
• 89 % Efficiency (Jobs successful) 
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SiD DBD Summary and Beyond 
- We have presented a detailed design for a detector capable of high 

precision physics studies and discoveries at the ILC. 
 

-  Our technology choices are based on the currently available R&D 
results from SiD, CALICE, FCAL and other sources. 
 

-  We will continue to study/develop the SiD concept and pursue 
additional physics studies. 

 
-  As the ILC moves towards realization, we will expand SiD globally 

and work energetically with the new Linear Collider Organization to 
promote the ILC project 

SiD研究グループは、 日本でDBDを紹介する機会
を与えてもらえましたことを大変光栄に思います。 
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SiD Workshop 
SLAC, January 16-18, 2013 

This will be a critical meeting as we move forward from the 
DBD towards the next phase of the realization of the ILC and 

the SiD detector concept 
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Extra slides 
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SiD DESIGN STUDY COORDINATORS 
J. Jaros, H. Weerts, A. White 

ADVISORY COMMITTEE 
All names on this chart 

DBD EDITORS 
H.Aihara, P. Burrows, L.Linssen, M. Oreglia, 

M. Stanitzki 

EXECUTIVE COMMITTEE 
H. Aihara, J. Brau, M. Breidenbach, P. Burrows, M. Demarteau,  

J. Jaros, J. Karyotakis, H. Weerts, A. White 

R&D   
A.White, Coordinator 

J. Brau, M. Demarteau, co-PIs 

VERTEXING   
Su Dong 
R. Lipton  

Mech: W. Cooper 

CALORIMETERS   
A. White 

ECal: R. Frey/M. Stanitzki 
HCal: A. White/H. Weerts  

PFA: N. Graf/S. Magill 

MUON   
H. Band 
E. Fisk 

BENCHMARKING   
T. Barklow 

A. Nomerotski 

COST   
M. Breidenbach 

SILICON TRACKER 
M. Demarteau 

R. Partridge 
Mech: W. Cooper 

ELECTRONICS   
G. Haller 

SOLENOID 
FLUX RETURN 
K. Krempetz 
W. Craddock 

VERY 
 FORWARD 

T. Maruyama 

SIMULATION 
N. Graf 

MDI 
P. Burrows 

T. Markiewicz 
M. Oriunno 

ENGINEERING 
K. Krempetz 
M. Oriunno 

SiD Design Study Organization 
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SiD Elements, Masses and Sizes 
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SiD Push-Pull detector exchange  

1 day 
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Muon System 

Barrel  - two orthogonal 
planes of strips 

Endcaps – modules slide 
between spacers/steel 

layers 
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Electronics and DAQ 

SLAC development of ATCA-
based systems 

KPiX 
schematic 

Versions of KPiX will be used for all subsystems except VTX and the high occupancy 
forward regions. 
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