

RESULTS OF A BEAM TEST OF A LARGE MICROMEGAS TPC PROTOTYPE WITH 6 MODULES

D. Attié, P. Colas, M. Dixit, P. Hayman, T. Maerschalk, A. Robichaud, J. Timmermans, W. Wang

All the R&D is gathered in LCTPC

38(*) member + 7 observer institutes from 12 countries

(*) 25 signed the MOA

www.lctpc.org

The EUDET test setup at DESY

The EUDET (FP6) setup at DESY is operational since 2008 Upgraded within AIDA (FP7): autonomous magnet with 2

cryo-coolers since July

Charge spreading by resistive foil

Resistive coating on top of an insulator: Continuous RC network which spreads the charge from $\sigma(avalanche)\sim15\mu$ to mm: matching pad width improves position sensitivity

M. Dixit, A. Rankin, NIM A 566 (2006) 28

PAD RESPONSE: Relative fraction of 'charge' seen by the pad, vs x(pad)-x(track)

Z=20cm, 200 ns shaping

x(pad) - x(track) (mm)

Integrated electronics

- New detector: new routing to adapt to new connectors, lower anode resistivity (3 M Ω /sq), new res. foil grounding on the edge of the PCB.
- New 300 points flat connectors (zero extraction force)
- New front end: keep naked AFTER chips and remove double diodes (count on resistive foil to protect against sparks)
- New Front End Mezzanine (FEMI)
- New back-end for up to 12 modules
- New DAQ, 7-module and more compact format
- New trigger discriminator and logic (FPGA).

The multi-module configuration allows new studies :

- Performance in cracks
- Module misalignment
- distortions

Smooth data taking in July, with over 1 000 000 evts. Air cooling and temperature control. However 6 modules only, 2 of them prototype or pre-serie, imperfect contacts

Effective gain vs mesh voltage is measured by using the fitted MPV of the (Landau) distribution of the measured charge. It compares well with direct gain measurements with a 55Fe source on a detector without resistive foil (x2 lower)

Crack scan

Study the hit reconstruction efficiency at or near the crack: take data with beam, moving by steps of 2mm

Upper crack

Lower crack

Padrow number (3x24=72)

Hits with ADC>150, 1-track evts

Beam

direction

Crack scan

Number of hits vs x

Effect of cracks is felt in an area ~1cm around. In the worst case, 50% of the hits are lost

Brute force alignment

ROW NUMBER: 3x24 = 72

Displacement in mm

Residual Means

Residuals for rows

Alignment

Z=10cm

Fitted displacement:

Rotation:

 $\delta \phi$ = -1.7 mrad, 3.7 mrad and 8.4 mrad Translation:

 $\delta x = -54 \, \mu m$, 180 μm and 278 μm

After alignment : only distortions remain (probably ExB effect)

Maximum effect of distortions 400μm

On-going electronics developments

GdSP: gaseous detector signal processing (or Go digital as Soon as Possible) CERN-based collaboration lead by Paul Aspell, including Saclay: F. Guilloux and E. Delagnes, continuing S-ALTRO evolution.

Common development for CMS GEM μ -chambers and LC TPC. Recently considering ALICE upgrade (GEM TPC and μ chambers).

Main developments: 130 nm technology, 64 or 128 channels, low noise and ultra-low consumption, many power domains to ease power switching

First Si test to be submitted in February 2013 (AIDA)

Goals for the FE: for 10 pF detector capacitance and 100 ns peaking time ENC<900 e- and power < 1mW/ch

Front End specifications

Parameter	VFAT2 (IBM 0.25)	SALTRO (IBM 0.13)	VFAT3 / GdSP (IBM 0.13)
Linear range	+- 12fC	150fC	Max 200fC
Input capacitance (pF)	20	0-20	5 - 10 - 30 - 60
Noise	~500e- ⊕ 40-60e- /pF @ 25ns	~ 650e- ⊕ 15e-/pF @ 120ns	<saltro th="" vfat<=""></saltro>

Starting from data measured on ABCN (130nm design by Jan Kaplon for ATLAS SCT):

* 800 e- @ 5pF, tp=22ns, 100μW

From Paul

- * assuming serie noise only + strong inversion for the input transistor
 - → we can hope 530 e- @10pF, tp=100ns, 200 μW
 - → Ultra Low power low noise design seems feasible (cf slide 6)

Parameter	VFAT2	SALTRO	VFAT3/GdSP
Power (mW/channel)	1.5 (IBM 250nm) (incl. comparator)	10	<< 1

Proposal for CFE

Summary

Successful test of 6 modules at a time

- Most integration questions addressed
- Improvements needed in contacts of the flat connectors
- Multi-modules aspects addressed: alignment, reconstruction

Next step: 7 modules high quality test, full calibration on the test bench, detailed analysis in 2013-2014

R&D projects: thinner meshes, other charge dispersion devices (ceramic with ruthenium oxide).

Then a larger module with smaller pads for the inner wheel.

Thanks to our DESY colleagues, especially Ralf Diener, Christophe Rosemann and Felix Müller