T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reco struction neutrino

Event Selection

Events Passed Cuts

g_{tth} Measurement

Conclusions

ttH: Towards the DBD

T. Price

University of Birmingham

txp@hep.ph.bham.ac.uk

November 14, 2012

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recon struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Apologies

- 2 LCWS Round-up
- **3** $\gamma\gamma$ removal
- 4 Signal and Backgrounds
- 6 Event Reconstruction neutrino Masses

6 Event Selection

Events Passed Cuts

- **7** g_{tth} Measurement
- 8 Conclusions

Overview

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reconstruction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measurement

Conclusions

Apologies Power Outage

On Tuesday 6th November all of the power to Selly Oak and the university campus was cut due to a fire at a substation damaging the HV cables. The university has been running on back up generators with minimal facilities since. Anywhere that this has affected the work I will use the following

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reconstruction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measurement

Conclusions

LCWS Round-Up

Work to be completed

- Finalised $\gamma\gamma \rightarrow hadrons$ background removal
- Update to LCFIPlus with v02 and 1TeV 6q samples
- Add in tth \rightarrow others backgrounds
- Add in additional cuts on Higgs decay helicity
- Add BDT analysis using TMVA
- Process all events and get analysing

$\gamma\gamma~{\rm removal}$

$\gamma\gamma \rightarrow hadrons$

- 4.1 $\gamma\gamma$ evts/bunch overlayed
- \sim 50 GeV extra energy in event
- How does this effect the measurements?

$\gamma\gamma \rightarrow hadrons$ Removal

- Ignore and see what happens
- Durham 8 jets remove jets passed certain $\cos(\theta)$
- Remove all PFOs with certain $\cos(\theta)$ then Durham 6 jet
- Use hadronic kt algorithm with optimal value of R
- Also need to evaluate purity of final PFOs

ttH: Towards the DBD

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recor struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measurement

$\frac{\gamma\gamma \text{ removal}}{\text{Durham methods}}$

ttH: Towards the DBD

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Background

Event Recor struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

$\begin{array}{c} \gamma\gamma ~ {\rm removal} \\ {\rm Kt ~ methods} \end{array}$

ttH: Towards the DBD

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Background

Event Recor struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Background

Event Reconstruction

Event Selection

Events Passed Cuts

g_{tth} Measuremer

Conclusions

$\gamma\gamma ~ {\rm removal}_{\rm Results}$

	Method	χ^2	Eff	Purity	sqrt(eff*pur)
_	ee_kt 8j	61.899	0.904	0.922	0.913
	kt0.5	252.437	0.729	0.958	0.835
	kt0.6	192.129	0.776	0.951	0.859
	kt0.7	126.776	0.816	0.944	0.878
	kt0.8	88.3815	0.847	0.937	0.891
	kt0.9	67.4123	0.873	0.931	0.901
	kt1.0	45.6656	0.894	0.925	0.910
	kt1.1	38.7979	0.912	0.920	0.916
	kt1.2	28.3917	0.927	0.915	0.921
	kt1.3	32.9834	0.939	0.911	0.925
	kt1.4	37.9565	0.949	0.907	0.928
	kt1.5	47.2999	0.957	0.903	0.929

Optimised at kt R=1.2 (Masses also follow same pattern)

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recon struction neutrino Masses

Event Selection

Events Passe Cuts

g_{tth} Measuremen

Conclusions

Signal

- $e^+e^-
 ightarrow b l
 u \, ar b q ar q \, b ar b$ (semi leptonic)
 - 6 Jet final state
 - 4 b-jets
 - Isolated lepton
 - Missing energy and momentum (neutrino)
 - Reconstructed masses $M_{l\nu}=M_W=M_{jj}$, $M_{l\nu j}=M_t=M_{jjj}$, $M_{jj}=M_H$

Backgrounds

- tth other
- ttz-all-all
- ttbb-all-all
- 6f_ttbar

Signal and Backgrounds

Reconstruction

Using btag information to reduce number of combinations hadronic W uses 2/3 lowest btags, all others use 4/5 of highest tags

$$\chi^{2} = \frac{(M_{bb} - M_{H})^{2}}{\sigma_{bb}^{2}} + \frac{(M_{bjj} - M_{t})^{2}}{\sigma_{bjj}^{2}} + \frac{(M_{bl\nu} - M_{t})^{2}}{\sigma_{bl\nu}^{2}}$$

•
$$M_H = 125 \,\,{
m GeV}$$

• $M_t = 173$ GeV ?? (seem to remember hearing this somewhere)

ttH: Towards the DBD

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reconstruction

neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ remova

Signal and Backgrounds

Event Recon struction

neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Event Reconstruction

In signal there is missing energy due to the neutrino. Assume $\ensuremath{\mathsf{mass}}=0~\ensuremath{\mathsf{GeV}}$

 $P_x^{\nu} = -\sum_{pfo=1}^{n} P_x^{pfo}$ $P_y^{\nu} = -\sum_{pfo=1}^{n} P_y^{pfo}$ $P_z^{\nu} = -\sum_{pfo=1}^{n} P_z^{pfo}$

$$-\sum_{pfo=1}^{r}$$

$$E^{
u}=\sqrt{(P_x^{
u} imes P_x^{
u})+(P_y^{
u} imes P_y^{
u})+(P_z^{
u} imes P_z^{
u})}$$

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ remova

Signal and Backgrounds

Event Reconstruction

neutrino Masses

Event Selection

Events Passe Cuts

g_{tth} Measuremen

Conclusions

Event Reconstruction

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ remova

Signal and Background

Event Recon struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Event Reconstruction

Reconstructed Masses

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Background

Event Recor struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Event Reconstruction

Reconstructed Masses - Higgs

- T. Price
- Apologies
- LCWS Round-up
- $\gamma\gamma$ removal
- Signal and Backgrounds
- Event Recor struction neutrino Masses
- Event Selection
- Events Passed Cuts
- g_{tth} Measurement
- Conclusions

Event Selection

- nlsolatedLeptons = 1
- Total Visible Energy
- nPandoraPFOs
- Thrust
- Ycut
- Btag
- χ^2 of reconstruction
- Final masses
- Higgs decay products helicity

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reconstruction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

$$626 < \mathsf{E}_{\textit{vis}} < 986$$

Event Selection

Cuts - Total Visible Energy

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reconstruction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

 $152 < \mathsf{PandoraPFOs}$

Event Selection Cuts - No. PandoraPFOs

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reconstruction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

Event Selection Cuts - Thrust

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reconstruction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

Event Selection Cuts - Y56

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recon struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

Event Selection Cuts - Btag3

?? < Btag3

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reconstruction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

Event Selection Cuts - χ^2

 $\chi^2 < ??$

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Reconstruction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

 $385 < M_{tot} < 650$

Event Selection

 $0 < M_{tot} < 1000$

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recon struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

 $100 < M_t^{lep} < 326$

Event Selection

Cuts - Leptonic Top Mass

 $0 < M_t^{lep} < 1000$

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recon struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

$118 < M_t^{had} < 262$

Event Selection

Cuts - Hadronic Top Mass

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recon struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Pe-0.8 Pp+0.2

Event Selection

Cuts - Higgs Mass

 $0 < M_t^h < 1000$

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recor struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measurement

Conclusions

Event Selection Cuts - Higgs Helicity

Not yet implimented. Code written but cut value not optimised

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recor struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measurement

Conclusions

Pe-0.8 Pp+0.2

Event Selection

Events Passed Cuts

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recon struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Event Selection Events Passed Cuts Pe-0.8 Pp+0.2

T. Price

Apologies

LCWS Round-up

 $\gamma\gamma$ removal

Signal and Backgrounds

Event Recon struction neutrino Masses

Event Selection

Events Passed Cuts

g_{tth} Measuremen

Conclusions

Event Selection Events Passed Cuts Pe+0.8 Pp-0.2

T. Price

neutrino Masses

Events Passed

g_{tth} Measurement

g_{tth}

$$g_{fHf} \propto m_f$$
 (1)

$$g_{ttH} = \frac{M_t}{\nu} = 0.711 \tag{2}$$

$$\left(\frac{\Delta g_{ttH}}{g_{ttH}}\right)_{stat} = \frac{1}{S_{stat}\left(t_{ttH}^2\right)\sqrt{\epsilon_{sel}^{signal}\rho_{sel}^{sample}L}}$$
(3)
$$\left(\frac{\Delta g_{ttH}}{r_{sel}}\right) = \frac{1}{C_{sel}\left(r_{sel}^2\right)}\frac{1-\rho_{sel}^{sample}}{r_{sel}^{sample}}\frac{\Delta\sigma_{BG}^{eff}}{r_{sel}^{eff}}$$
(4)

$$\left(\frac{\Delta g_{ttH}}{g_{ttH}}\right)_{syst} = \frac{1}{S_{syst}\left(t_{ttH}^2\right)} \frac{1 - \rho_{sel}}{\rho_{sel}^{sample}} \frac{\Delta \sigma_{BG}}{\sigma_{BG}^{eff}}$$
(4)

assuming radiation off Z is negligable

$$S_{stat}\left(t_{ttH}^{2}\right) = \frac{\sqrt{\sigma_{ttH}}}{g_{ttH}^{2}} \tag{5}$$

$$S_{syst}\left(t_{ttH}^{2}\right) = \frac{1}{g_{ttH}^{2}} \tag{6}$$

Conclusions

- ttH: Towards the DBD
 - T. Price
- Apologies
- LCWS Round-up
- $\gamma\gamma$ removal
- Signal and Backgrounds
- Event Reconstruction neutrino Masses
- Event Selection
- Events Passed Cuts
- g_{tth} Measurement
- Conclusions

- $\gamma\gamma \rightarrow \rm hadrons$ optimally removed using kt R=1.2 for this analysis
- Pe-0.8 Pp+0.2 Final significance is ${\sim}6.5$ leading to a statistical error of ${\sim}11$ % for 500 fb^{-1}
- Pe+0.8 Pp-0.2 Analysis interupted by power outage again this morning. Will be finished with approx 2 hours of power!
- Need to combine the two results
- Dominant background remaining is 6f_ttbar
- Work to be tested for kinematic fit but really need batch system running for this
- Dummy TMVA tester setup and seems to work. Main focus of work this week

Apologies, work is mainly done for cut based but no access to pre