${ m H} ightarrow \mu \mu$ @ 1 TeV Update

C. Calancha (KEK, IPNS) Weekly Physics & Software Meeting

November 30th, 2012

1

 $H \rightarrow \mu \mu$

- E=1 TeV
- cross section: 748.4 fb⁻¹(lr), 5.905 fb⁻¹(rl)
- branching ratio: 0.000221
 - $\bullet~\approx 45$ events with L=500 ${\rm fb}^{-1} and~(e^{-1},e^{+1}){=}(-0.8,{+}0.2)$
 - $\bullet~\approx 4$ events with L=500 ${\rm fb^{-1}}and~(e^{-1},e^{+1}){=}(+0.8,-0.2)$
- ILCSOFTv16
- Included overlay $\gamma\gamma \rightarrow$ hadrons

Main Background Sources

 $ZZ(WW) \rightarrow \nu \nu \mu \mu$

 $Z \rightarrow \nu \nu \mu \mu$

- same final state as the signal.
- Only showed a few of the total Feynman diagrams.

Other sources considered:

• $\mu\mu e^+e^-$ (leptons being forward)

- $Z \rightarrow \mu \mu$
- 4f_sw_l
- 4f_ww_l
- 4f_zz_l

Signal VS sznu_I Distributions

Event Variables looks very similar.

• Only the mass looks different.

C. Calancha, calancha@post.kek.jp

Preselection

2 Muons

- E > 15 GeV
- $E_{calE}/(E_{calE}+E_{calH}) < 0.5$

• $(E_{calE}+E_{calH})/|ec{P}|<0.3$

H candidate

•
$$E_{muon1} + E_{muon2} < 400 \text{ GeV}$$

•
$$|M(\mu^+,\mu^-) - 125| < 30 \text{ GeV/c}^2$$

- No isolation requirement.
- checked efficiency/purity on muon selection (next slide)
 - efficiency: # muons selected / # reconstructed muons E > 15 GeV
 - purity: # muons selected / # PFO's passing selection

Estimation of $\Delta(\sigma \cdot Br)/\sigma \cdot Br$

Naive Estimation of $\Delta(\sigma \cdot Br)/\sigma \cdot Br$

• Signal: 3 σ ($\sigma \approx$ 0.36 GeV/c²) around peak

- sznu: sidebands (120,124) & (126,130)
- zzorww: assumed flat, averaged over (100,140)
 - Normalized number of background events to signal window size

• Alternative calculation provides 34 %

- Fitting sznu and extrapolatin integral in region (124.53, 125.47)
- Previous slide used bigger signal region definition (123.92, 126.08)
- Method using toy MC stil under development
- No good fit to the data, so no realistic templates to generate toy samples. :-(

$$\stackrel{\mathrm{H}}{\longrightarrow} \frac{\mu\mu}{\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br}}$$

- Estimated 36.3 % ($L = 500 \text{ fb}^{-1}$, beam pol. $Pe^-, Pe^+ 0.8, +0.2$) counting (using sidebands for background).
- Alternative method with toy MC under study.
 - Extraction of templates from data.
 - Generation with these templates of many independent datasets.
 - Fit with same templates.
- Not good fit to data yet in order to extract templates.
- Writting Public Note describing analysis.

Back up

Muon Selection Efficiency/Purity

process	effi (%)	purity(%)
signal	98.1747	99.8674
2f_z_bhabhag	NA	0
2f_Z_hadronic	95	37.2549
2f_Z_leptonic	95.4683	95.4683
4f_WW_leptonic	98.1707	95.2663
4f_ZZWWMix_hadronic	92.3077	21.0526
4f_ZZWWMix_leptonic	97.4763	96.5625
4f_ZZ_hadronic	94.7368	45.5696
4f_ZZ_leptonic	96.1123	97.8022
4f_ZZ_semileptonic	98.1595	85.5615
4f_singleW_leptonic	99.0741	99.0741
4f_singleZnunu_leptonic	98.0831	99.3528
4f_singleZnunu_semileptonic	100	52.381
4f_singleZsingleWMix_leptonic	NA	0
4f_singleZee_semileptonic	100	27.2727
4f_singleZee_leptonic	97.7778	95.6522
4f_WW_semileptonic	96.4103	87.4419
4f_singleW_semileptonic	100	31.25

High efficiency/purity for the relevant modes (leptonic final states).

_