

Operational Experience of the Triple-GEM Detectors of the LHCb Muon System: Summary of 2 years of data taking

Alessandro Cardini / INFN Cagliari, Italy Giovanni Bencivenni / LNF INFN, Italy Patrizia de Simone / LNF INFN, Italy

Outline

The LHCb Experiment

Designing Triple-GEM detectors for LHCb

The Operational Experience

- High Voltage optimization
- Gas monitoring
 - Some other points

Conclusions

The LHCb Experiment

IEEE NSS, Oct. 30th, 2012

The LHCb Muon System

It provides:

- hardware muon trigger (L0 muon)
- muon(s) p_T estimate(s)
- muon identification at the High Level software Trigger (HLT) and for offline event reconstruction
- 5 stations separated by Fe walls, projective geometry
- Mainly made of multi-wire proportional chambers
- First muon station (M1) located in front of the calorimeter
- M1 improves the p_t estimate at L0 trigger level
- In M1 central region (up to) 500 kHz/cm² → triple GEM detectors
- M1R1: 0.6 m² → 12 chambers of 20x24 cm² active area

IEEE NSS, Oct. 30th, 2012

LHCb Triple-GEM Detectors

Requirements: digital pad readout, up to 500 kHz/cm², 96% efficiency in 20ns time window, low cluster size (<1.2), no aging

Non-standard gaps: 3mm (ioniz.) / 1mm / 2mm / 1mm (induct.)

2 detectors in logical-OR pad-by-pad to improve performances & reliability

Innovative gas mixture: $Ar/CO_2/CF_4$ at 45/15/40

Wide working plateau: 70V

No aging effects seen up to 2.2 C/cm² during R&D

Operations in LHCb

HV-related issues: *Tuning the detector working point*

GEM Powering Circuit

- Custom-made multichannel HV power supply, electrically equivalent to an active resistive divider
- Detector current measured only on last GEM foil – all data logged by ECS
- Protection resistors on HV filters on detector + 1 M Ω in series on sectors for each GEM foil

Fill 3182, $\langle L \rangle = 3.96 \ 10^{32} / \text{cm}^2 / \text{s}^{-1}$, 5.62 pb⁻¹, 4^h15'

HVGEM System Current Monitor

IEEE NSS, Oct. 30th, 2012

Sparks and Shorts

- Nowadays, LHCb Triple-GEM detectors are probably the ones running in the most severe conditions
 <u>operating point is very critical</u>
 - Sparking events are detected by current monitor (not detecting which GEM foil is sparking)
- (Continuous) sparking could eventually result in a GEM foil short → we need to minimize discharge probability in normal operations
- In these years of data taking we had some GEM in short, 1/2/1 respectively in 2010/2011/2012
- All these shorts occurred on first GEM (G1), the first amplification stage... Why?

Detector A15A1L current vs. time → Sparking recovered by itself in this particular case

Tuning the HV Working Point

- Initial working point defined during R&D:
 - G_{min} ~ 4000 (min. required efficiency)
 - G_{max} ~ 17000 (PSI discharge probability measurements)
 - "Traditional" considerations on Raether limit and laboratory measurements with alphas suggested GEM gains decreasing from GEM1 to GEM3
- April 2010: G[~]6000 (435V/425V/415V)
- Readjusted to lower gain values during 2010 and 2011

May 2012: *go symmetric*! > 3x415V, safer for GEM1, G[~]4300

Detector performances in 2012

IEEE NSS, Oct. 30th, 2012

What we learned on HV

- Gain fine tuning needed because we observed
 - Sparking
 - Detector current instabilities
- It seems that in LHCb
 - Sparking rate is higher than expected: neutrons background
 - Low Z material of the detector: neutron converter \rightarrow HIP \rightarrow discharges
 - GEM1: Usually at a higher voltage \rightarrow more sensitive to discharges

Solutions

- 1. Reduce the gain done
- 2. Put all 3 GEMs at the same voltage done
- 3. Reduce the total voltage on GEMs and keep same gain by slightly changing the gas mixture (reducing CF_4 and/or adding isobutane) proposed, under evaluation

Operations in LHCb

Gas-related issues: *Monitoring the Gas Mixture*

The LHCb GEM Gas System

- Made by CERN Gas Group Open–loop system
- $Ar/CO_2/CF_4$ in percentages 45/15/40
- Flows: ~80 cc/min per detector monitored by ECS
- Fresh mix analysis permanent tools:
 - Gas Chromatographer (GC)
 - $H_2O + O_2$ measurement
- Possibility of sampling return gas with portable GC

2012 GEM Current Jumps

- Observed some "jumps" in ALL triple-GEM detector luminosity-normalized currents all along this year
- True Gain variations!
 → detector signals move correspondently in time

Investigations performed

Possible causes of a gain change:

• Gas

- GC-analysis show correct gas mixture within O(1%)
- Small gas fraction changes (1%)
 create too-small gain changes (~5%)

HV

- 24 independent HV modules
- Temperature & Pressure
 - No temperature variations seen
 - Pressure variations not correlated

→ Origin of this problem???

Premixed Gas Test

Inject gas from pre-mixed bottle only on half of the detectors

 Should be the same gas… <u>but 20% current increase</u> <u>observed!</u>

 \rightarrow It's definitely something related to gas...

IEEE NSS, Oct. 30th, 2012

At last…

- Some correlations were found by Gas Group (R. Guida, B. Mandelli et al., see poster N14-132)
- It appears that some of the gain jumps are in coincidence with the change over of the CF₄ bottles
- Looking carefully at GC analysis some variations of O_2/N_2 seen... is this correlated?
- Situation not yet clear will carefully monitor future CF₄ bottle changes

What we learned? What to improve?

- Gas mixture is a very critical point
- Gas monitoring units (GC, …) are excellent devices, but sometimes you do not know what to look for
- Imperative to implement redundant gas checking tools
 - 1. Automatic current/luminosity checks done
 - Independent gain monitoring tool with a small source-irradiated triple-GEM detector – in progress

Operations in LHCb

Other issues: *"Classical" aging*

Integrated charges in 2012

A18A2L: 18	A18A1L: 34	C18A1L: 31	C18A2L: 13	
mC/cm ²	mC/cm ²	mC/cm ²	mC/cm ²	
A18A2R: 12	A18A1R: 23	<u>C18A1R:</u> 17	C18A2R: 21	
mC/cm ²	mC/cm ²		mC/cm²	
A17A2L: 50 mC/cm ²	Bear	m Pipe	C17A2L: 42 mC/cm ²	
A17A2R: 59 mC/cm ²			C17A2R: 60 mC/cm ²	
A16A2L: 35 mC/cm²			C16A2L: n/a	
A16A2R: 35 mC/cm²			C16A2R: 35 mC/cm²	
A15A2L: 30	A15A1L: 33	C15A1L: 33	C15A2L: 34	
mC/cm²	mC/cm ²	mC/cm ²	mC/cm²	
A15A2R: 29	A15A1R: 36	C15A1R: 41	C15A2R: 18	
mC/cm ²	mC/cm ²	mC/cm²	mC/cm²	

• We expected twice this value >> Operating detector on the safe side!

•

Alessandro Cardini / INFN Cagliari

+

Conclusions

Triple-GEM Efficiencies in 2012

<i>Average Luminosity ~ 4 x 10</i> ³²	/cm²/s-1	fill	run
μ Chambers efficiency M1R1	4/5	2587	114436
0.000	11/5	2609	115063
0.990 F			
0.985	3/6	2692	117276
	8/6	2712	117776
0.980	10/6	2718	118240
	16/6	2734	118730
0.970 June	4/7	2806	120195
May July	16/7	2843	121798
0.965	30/7	2892	124224
0.960			
	2/8	2902	124494
0.955 August	16/8	2976	125788
September -	28/8	3011	126677
0.950 0 2 4 6 8 10 12 14 16			
	4/9	3025	127070
Fxcellent Performance	o Mara	8067	128426
	30/9	3113	129596

- The LHCb GEM detectors are operating in very hard conditions (high irradiation, long runs)
- A few shorts on G1 occurred during these years of data taking
 → tune working point
 → situation improved
- Effect of <u>heavy ionizing particle</u> has to be taken seriously into account in a hadron collider <u>environment</u>
- Monitoring and debugging tools are never enough

Backup slides

Why Triple-GEM were chosen

- The requirements for detectors for the inner region (R1) of the first muon station (M1) (~0.6m² but <u>~25% of the muon</u> <u>acceptance</u>) are:
 - Rate Capability
 - Station Efficiency
 - Cluster Size
 - Radiation Hardness 1.6 C/cm² in 10 years (**)
 - Detectors active area

up to 0.5 MHz/cm² 96% in a 20 ns time window (*) 1.2 for a 10x25 mm² pad size n² in 10 years (**) 20x24 cm²

- (*) A station is made of two detectors "in OR". This improves time resolution and provides some redundancy
 (**) Estimated with 50 e⁻/particle at 184 kHz/cm² with a gain of ~ 6000
- With a long R&D work (2000–2003) we demonstrated that Triple-GEM detectors are an adequate solution for the M1R1 region

Triple-GEM Design and Optimization

- Triple-GEM detector with anode pad readout - preamplifier and discriminator (CARIOCAGEM)
- Non-standard gaps
 - T1 is 1 mm to decrease the probability that a ionization in T1 could trigger the discriminator → hits in advance → worsening of time resolution
 - Induction gas is 1mm to have fast signals
 - Standard CERN GEMs, 200x240 mm² active area, 6 sectors
- Full chamber is made by two detectors in OR pad-by-pad, via the front-end electronic board → more redundant detector

IEEE NSS, Oct. 30th, 2012

Gas Choice

Triple-GEM Detector Time Resp

- Fast and nonflammable gas
 - CF_4 represent 40% of the mixture
- Requires a slightly higher voltage on GEM foils than a more classical Ar/CO₂ 70/30 mixture

Gas Gain

IEEE NSS, Oct. 30th, 2012

Alessandro Cardini / INFN Cagliari

31

Full Chamber Performance

- Excellent time resolution with 2 detectors in OR
- Wide HV operating plateau

Ageing Tests during R&D

Many aging tests performed, exceeding expected LHCb integrated charge

- Local: 6 keV X-Rays, ~1 cm²
- Large Area: PSI π M1 hadron beam, ~15 cm²
- Full detector: Enea-Casaccia 25 kCi ⁶⁰Co source, 0.5 ÷ 16 Gray/h

For all tests except high-rate Casaccia, no ageing was observed

High-rate Casaccia tests showed a gain reduction effects, found to depend on a low gas flow to irradiation ratio

All ageing effect, if present, can be compensated by readjusting the detector HV

Tuning the HV Working Point

Working point defined during R&D work

"Traditional" considerations on Raether limit suggested a gain decreasing from G1 to G3

- April 2010: 435V/425V/415V, G~6000
- October 2010: Some instabilities observed → Tested some reduced configurations: 430V/420V/410V and 425V/415V/405V
- May 2011: Switched to more conservative 420V/415V/410V
- June 2011: Some instabilities on a few detectors → 415V/415V/410V on these
- May 2012: <u>go symmetric</u>! → 3x415V, more safe for G1, G[~]4300

High Luminosity and HV filters

- LHCb designed to run at average luminosity of 2x10³²/cm²/s⁻¹
- HV filter and protection resistors calculated to have a low (but unavoidable) voltage drop on GEM foils
- Now running routinely 4x10³²/cm²/s⁻¹
 → gain depends on instantaneous
 Iuminosity
- Planning to redesign these HV filters, to be replaced during LS1

GEM Chamber LP Normalized Current vs. Luminosity

Detector Gain Monitoring

- 10x10 cm² triple-GEM detector
- ⁹⁰Sr source → monitor detector current
- Possibility of using fresh or return gas, or gas from premixed bottle (reference)
- Working but not in normal operation
- Will be completed and integrated in LHCb ECS during LS1

