R&D and simulations on gain stability and IBF for the ALICE GEM-TPC upgrade

Taku Gunji Center for Nuclear Study The University of Tokyo For the ALICE TPC Upgrade Collaboration

RD51 mini week at CERN, Dec. 3-5, 2012

<u>Outline</u>

- ALICE GEM-TPC upgrade
- R&D Status of gain stability
- R&D Status of Ion back Flow
- Simulation study of Ion Back Flow
- Summary and Outlook

ALICE GEM-TPC Upgrade

- Lol of the ALICE upgrade
 - <u>https://cdsweb.cern.ch/record/1475243/files/LHCC-I-022.pdf</u>
 - Endorsed by the LHCC
- High rate capability
 - Target: 2MHz in p-p and 50kHz in Pb-Pb collisions
- Plan for the ALICE-TPC upgrade
 - No gating grid and continuous readout
 - Inherited the idea from PANDA GEM-TPC [arXiv:1207.0013]
 - MWPC readout will be
 - replaced with GEM.
 - Ne(90)/CO₂(10)
 - $E_d = 0.4 kV/cm$

ALICE GEM-TPC Upgrade

- Major issues for the GEM-TPC upgrade
 - dE/dx resolution for the particle identification
 - ~5% for Kr by PANDA GEM-TPC.
 - Beamtest of prototype GEM-TPC at CERN PS-T10
 - Detailed presentation by P. Gasik

Electronics (PCA16+ALTRO: loan from the LCTPC. Thanks!!) & RCU TPC Gas Vessel & GEM-Stack

ALICE GEM-TPC Upgrade

- Major issues for the GEM-TPC upgrade
 - Stability of GEM (gain, charge up, discharge, P/T)
 - Measurements in the lab.
 - Test with the prototype at ALICE cavern in 2013. (p-Pb)
 - Ion back flow to avoid space-charge distortion
 - Requirement < 0.25%
 - Test bench in CERN, Munich, and Tokyo
 - Simulations to search for the optimal solutions

<u>R&D of gain stability</u>

- Measurement setup
 - Single wire chamber as reference
 - Monitor humidity

Single/double GEM gain~900-2000 Current density ~ 2-7nA/cm² Sealed shielding box flushed with N_2 , containing GEM

Single wire chamber used as reference

V. Peskov J. Reinink

Gain stability

- 2 GEMs (cylindrical holes) in Ar/CO₂(10). Sr⁹⁰ source
 - 4-5% variation of GEM and wire chamber current
 - 4-5% variation was compatible with temperature variation (T=23~24.5).
 - Gain stays stable to within 1% after a few hours
 - Humidity: 56-73 ppm. Gain~900 & current density~1.8nA/cm²

Gain stability

- Gain~2000 & current density ~ 7nA/cm²
 - Stability is ~3%
- Next is to measure stability with 3 GEMs under Ne/CO $_{\rm 2}$

<u>Ion back Flow</u>

- High rate operation (50kHz), continuous readout (no gating grid), and online calibration/clustering
 - Need to minimize field distortion by back drifting ions
 - Target: IBF ~ 0.25% at gain 1000-2000
- Direction of IBF R&D
 - Use standard GEMs and optimize by asymmetric electric field
 - Use exotic GEMs (Flower GEM, Cobra GEM, MHSP)
 - Simulations to search for optimal solutions

Measurement at CERN/TUM/CNS

- Systematic measurement of IBF
 - Using 3 layers of standard GEMs
 - Rate and gain dependence under various field configurations
- Setup at CERN (RD51-Lab.), TUM, and CNS
 - Various rate of X-ray gun
 - Simultaneous measurement of IBF/energy resolution (TUM/CNS)
 - Readout currents from all electrodes (TUM)

Rate dependence of IBF

- Changing X-ray tube current and absorber filter
 Covering charge density= 1000-40000nA/(10cm²)
- Clear rate dependence on IBF (0.1%~1%)
 - Absorption of ions at GEM3 gets larger for higher rate

X-ray position dependence

- Changing X-ray position from top of GEM1
 Different local charge density due to diffusion
- IBF gets better for smaller distance between X-ray and GEM1 top (\rightarrow larger local charge density).

Drift space dependence

- Changing drift space from 80mm to 3mm.
 - Different interaction rate
- Clear difference in IBF due to different interaction rate.
 - IBF gets better for larger interaction rate.
 - IBF=2~5% for lower rate (not so much dependeing on rate).

V_{GEM} dependence

- V_{GEM} dependence for different drift space
- IBF depends on V_{GEM} .
 - Steeper dependence for 80mm case.
 - (even if rate dependence is small for 3mm, V_{GEM} dependence is visible..)

<u>Space charge and IBF</u>

- Simulation study by garfield simulation.
 - Presented at the last RD51 meeting on Oct. 2012.
- Put many lons above GEM1 (Ed=0.4kV/cm)
- IBF strongly depends on N_{ions} (>10⁴). Space charge may play an important role for IBF.

T. Gunji

Space charge and IBF

- More dynamical simulations by garfield (2 GEMs).
 Presented at the last RD51 meeting on Oct. 2012.
- Make spatial profiles of ions created by avalanches for 10usec (100kHz) and 100usec (10kHz) separated seeds.

Ion profile per one seed (Ar/CO₂=70/30, Gain~1000)

Space charge and IBF

- IBF vs. rate (time separation between 2 coming seeds)
 - Rate/hole=10-50kHz in the lab. and less than 1kHz for LHC Pb-Pb 50kHz collisions
- IBF strongly depends on rate, gain, and # of seeds/hole in case of high rate operations.

- Qualitatively consistent with the measurements.

IBF from TUM (lower rate)

- Reading currents from all electrodes.
- 3mm as drift space. X-ray tube with 2mm collimator.
- Pad current ~ 5uA(<< current at CERN measurements.)
- No strong rate dependence (may be due to low rate and less space charge). IBF = 2-4%

A, Honle

M. Ball

K. Eckstein

IBF from TUM (lower rate)

- Reading currents from all electrodes.
- 3mm as drift space. No collimator.
- No strong rate dependence (might be due to lower rate, much less space-charge).
- IBF = 7%

Different field configurations

- Lowering E_{T2} and high E_{T1}
 - 0.8% of IBF in Ar/CO₂ with E_{T2} =0.16kV/cm and E_{T1} = 6kV/cm $(E_d = 0.25 kV/cm)$
- IBF=3-5% for Ne/CO₂ •
 - E_{τ_1} cannot be so high.
 - Adding N₂ to achieve high E₁?

GEM voltage settings		Detector field settings	
GEM1 GEM2 GEM3	225 V 235 V 285 V	E _{Drift} E _{T1} E _{T2} E _{Ind}	$\begin{array}{c} 0.4{\rm kVcm^{-1}}\\ 3.8{\rm kVcm^{-1}}\\ 0.1\ldots0.8{\rm kVcm^{-1}}\\ 3.8{\rm kVcm^{-1}} \end{array}$

Optimum Settings (Tina). E_ Scan. Scale factor 1.00. Ne/CO2 90/10. AmpTek Mini-X. Nov 21, 2012

IBF for various GEM configurations

• Search for optimal solutions for IBF by simulations

T. Gunji

Summary and Outlook

- R&D of gain stability and ion back flow are on-going.
- Gain stability <3% (2 GEMs, higher gain and rate)
 Stability of 3 GEMs will be studied under Ne/CO₂.
- IBF depends on rate of X-ray, spread of seed electrons (diffusion), and gain of GEM under high rate conditions.
 - Space charge plays an important role for IBF under high rate.
 - This is (partially) confirmed by garfield simulations.
- Under low rate, IBF is 2-5% with 3 standard GEMs.
- Try to reduce IBF further:
 - More study on asymmetric field configurations
 - Use standard GEMs with different geometry (hole size, pitch)
 - Use exotic GEMs (Thick COBRA GEM, Flower GEM)
- Simulation studies are on-going.

Backup slides

<u>R&D of gain stability</u>

