Test beam in DESY

- Main manpower:
 - 3 postdocs
 - 1 PhD student
 - 3 master students
- ~1 month
 - installation
 - tests
 - data taking

Configuration

- 3 modules, ~1/2 pads instrumented (~7600 channels)
- 4segment GEMS

- ALTRO electronics
- New protection boards

Philippe Gros, Saga university, Japan

Test beam campaign

- High Voltage testing
 - in test boxes, no problems
 - in LP: HV trips => reduced HV, fixed GEM voltages
- Electronics tests
 - High noise
 - Improved by extra grounding
- Quick, low statistics test runs to tune parameters
- High statistics data taking for performance studies

Electronics noise

The electronics noise increased to unusually high levels when the High Voltage was turned on.

Electronics noise

p1-gain0-shaper0-dac500 run: 18349

With improved grounding between the TPC and the HV distribution boxes, the noise is significantly reduced when the GEM HV is up

Philippe Gros, Saga university, Japan

Data taking

Quick resolution study

First run with improved grounding VGEM 330V, 340V

Increased GEM gain (330V, 355V): improved resolution at long drift

Increasing the GEM gain improves the resolution (as expected). The GEMs could not hold higher voltages.

Space residuals: Correcting GEAR file

Old GEAR file

Corrected using pad plane measurements

1 GEM broken

One GEM shorted, reason unclear. Further data taking with 2.5 modules

Long data taking

High statistic to allow tight cuts

- Z scans, phi = -10, 0, 10
- X scans B=0, 1T
- Theta scan
- Study of angle effects
- Study of alignment and field distortions

Conclusion

- Beam test with Asian modules completed
- Difficulties with HV trips and noise overcome
- Preliminary fast runs with low statistics (2000 events) very helpful for tuning parameters

with moving stage, a Z-scan takes ~1 hour

- Nice preliminary results, fun analysis to come
- Data summaries on our wiki: http://www-hep.phys.saga-u.ac.jp/ILC-TPC/index.php?Large%20Prototype %201%2FTests%2FBeamTest%202012%2FData%20Taking

Backup slides

Drift velocity

