

Pad Response Function PRF

İİL

Outline

- Intro: Signal Pulse
 - Definition of amplitude and time (A_i,t_i) for a pad
 - Conceptual Pad Response Function (PRF)
 - Scaling of PRF
- Determination of PRF parameters (calibration)
 - Parameterization of PRF
 - Seed track
 - X² minimization and number of d.o.f.
- Development and Future
 - Handling Error from (A,t) \rightarrow (PRF,t) \rightarrow (x,y,z) for a hit to unbiased track estimators (d0, ϕ , CU, z, λ)
 - Calibration PRF Module and Simulation
- Summary

Charge dispersion

- A high resistivity film bonded to a readout plane with an insulating spacer

- 2D continuous RC network defined by material properties and geometry.

IIL

- point charge at r = 0 & t = 0 disperses with time.

Micromegas + resistive anode

Pulse shape origin

 $T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$ track Transverse diffusion Longitudinal diffusion $L(t) = \frac{1}{\sigma_{\star}\sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_{\star}^2})$ mesh $R(t) = \frac{t}{T_{rise}} \qquad 0 < t < T_{rise}$ pads Induction gap =1 $t > T_{rise}$ *t* < 0 =0T(x)Preamplifier Response $A(t) = \exp\left(-\frac{t}{t_{f}}\right)\left(1 - \exp\left(\frac{t}{t_{r}}\right)\right)$ t > 0= 0t < 0Resistive foil + glue $\rho(x, y, t) = \left(\frac{1}{\sigma \sqrt{\pi th}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$ h = 1/RC4 Х

Transverse diffusion

Longitudinal diffusion

$$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$$

 $T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$

Induction gap	$R(t) = \frac{t}{T_{rise}}$	$0 < t < T_{rise}$
0 1	= 1	$t > T_{rise}$
	=0	<i>t</i> < 0

Preamplifier Response
$$A(t) = \exp\left(-\frac{t}{t_f}\right)\left(1 - \exp\left(\frac{t}{t_r}\right)\right)$$
 $t > 0$
= 0 $t < 0$

Resistive foil + glue
$$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$$

5 $h = 1/RC$

Transverse diffusion

Longitudinal diffusion

$$T(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$$

 $T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$

Induction gap	$R(t) = \frac{t}{T_{rise}} \qquad 0 < t < T_{rise}$		
51	=1	$t > T_{rise}$	
	-0	<i>t</i> < 0	

L(

Preamplifier Response
$$A(t) = \exp\left(-\frac{t}{t_f}\right)\left(1 - \exp\left(\frac{t}{t_r}\right)\right)$$
 $t > 0$
= 0 $t < 0$

Resistive foil + glue
$$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$$

6 $h = 1/RC$

Raw Charge Shape versus Shaped Pulse

Amplifier

Pads

Storage

Figure: N. Shiell

Raw Charge Shape versus Shaped Pulse

$$H(t) = A_0 \left(\frac{t}{\tau}\right)^3 \sin(\frac{t}{b\tau}) \exp(-\frac{t}{\tau})$$

٠

from Eric Delagnes etal at Saclay

Stand-Alone Calculation (2011)

ic

Parameter	Initial value	Final value	???
Drift speed	76.98 um/ns	fixed	value
Transverse diffusion	95.4 um/root(cm)	fixed	in the lab
Longitudinal diffusion	231.289 um/root(cm)	fixed	222
Resistivity	2.9 MOhm/sq	fixed	
Glue thickness	75 um	fixed	
Dielectric constant	4.5	2.66 ←	> 2.09
Induction time	120 ns	166 ns ←	▶ 199 ns
b (shaper)	3.7	3.42 <	> 3.33
τ (shaper)	$151 \mathrm{ns}$	$151 \mathrm{~ns}$	
Pad angular width	0.001984 rad	fixed	
Pad height	6.84 cm	fixed	
Lower radius of bottom row	$1.522457785 {\rm m}$	fixed	
X_0 track	event dependent		
$\phi ext{ track}$	event dependent		
Drift distance	$30 \mathrm{cm}$	$30 \mathrm{~cm}$	
			1

NEED INPUT OF DESIGN ENGINEER AND ELECTONIC EXPERT

Stand-Alone Calculation (2011)

CRUCIAL TO CHARACTERIZE DETECTOR PARAMETERS

Shaped Pulse (for different shaping time)

Pad Amplitude

Use the maximum as the amplitude Single Point Maximum(SPM) A_i = max pulse height P(i)

Pad Amplitude

method used here

2) Maximum of Parabola
 Quadratic Fit Method (QFM)
 A_i = max of parabola P(i)

Pad Amplitude

Method use pre-2011

3) Integrate above threshold Re-integration method (RM) $A_i = Sum P(i)$

Pad Amplitude

Method use in 2011

Pad Response Function (PRF)

ilc

For a given X_{track} (known position) the PRF is defined to be unity

Pad Response Function (model)

V E R S I T Y

- Only two parameters (simpler model)
- Easier to work with
- Better fits to data

PRF versus Z

LCTPC Transverse Resolution

2011 data Single module

ilc

Transverse Resolution

23

2011 data Single module

Source:

U N I V E R S I T Y

İİĻ

7-module LCTPC

2012 data 7-module

ilc iic

MarlinTPC

• MarlinTPC is the global effort to develop a single analysis code package for all the different prototype TPCs being developed.

• It is far from complete, but it has a solid foundation

• Furthermore, now seems to be the optimal time to no longer rely on stand alone code with hardcoded geometry, stand alone track-fit algorithm, calibration constants, etc...

• Goal to have processors: calibration for PRF determination, bias corrections and resolution determination (transverse and longitudinal)

MarlinTPC

– NativeToLCIO

• Converts data from the native file format of the detector hardware to the LCIO standard

- Main Code (i.e. Processor)

- DD: creates dense data files from LCIO
- Need a seed track
- PRF: determines track parameters and/or pad response function (PRF)
- BIAS: calculates and saves values used for bias and reso ROOT scripts

– ROOT Scripts:

- BIAS: calculates and corrects for signal bias inherent to the detector
- RESO: calculates the resolution

İİL

PRF first look

 $X^{2} = \sum \left\{ \frac{A_{i} - k \operatorname{PRF}(x_{i}, r, w_{i})}{A_{i}} \right\}^{2}$ О.

X² fit

$$PRF(x;r,w) = \frac{exp(-4ln(2)(1-r)x^2/w^2)}{1+4rx^2/w}$$

x_i = position of track on row I
r = fraction of Lorentzian (r=1 pure lorentzian
r=0 pure gaussian)

w = width

where we assumed $\sigma^2(A_i) = A_i$

Seed track (initial position "x" of the track) is obtained via a weighted mean of amplitudes on a row

Remark: Need to implement "eta" correction for determination of the weighted mean per row for avoiding small bias.

Amplitude Determination

- K Constant coefficient of the PRF
- A_i Pad Amplitude
- f_i PRF evaluated at position of ith pad

Define PRF coefficient as:

$$k = \frac{\sum A_i}{\sum f_i}$$

Remark: In the old method "k" computed by setting $\frac{d\chi^2}{dk} = 0$

$$\mathsf{k} = \frac{\sum_{j}^{m} \frac{A_{j} PRF(x_{j})}{\sigma_{A_{j}}^{2}}}{\sum_{j}^{m} \frac{PRF^{2}(x_{j})}{\sigma_{A_{j}}^{2}}} = \frac{\sum_{j}^{f_{j}} \mathbf{a}_{j}}{\sum_{j}^{f_{j}} \sum_{j}^{f_{j}} \mathbf{a}_{j}^{2}} \mathbf{a}_{j}^{2} \mathbf{a$$

Since all equations equal 0 adding them together should also give zero:

$$\begin{split} kf_1 - A_1 + kf_2 - A_2 + kf_3 - A_3 &= 0 \\ kf_1 + kf_2 + kf_3 &= A_1 + A_2 + A_3 \\ k(f_1 + f_1 + f_3) &= A_1 + A_2 + A_3 \\ k &= \frac{A_1 + A_2 + A_3}{f_1 + f_2 + f_3} \end{split}$$

PRFBasedHitFinderProcessor

.

PRFBasedTrackFinderProcessor

PRF very well constrained

PRF width parameters

Run #	Drift Distance (cm) W_3		W_5	W_AVG	
2180	2180	5	2.36	2.27	2.315
	2182	20	2.52	2.37	2,445
	2186	35	2.63	2.5	2,565
	2188	55	2.799	2.59	2.6945

ΪĻ

Dependence of PRF Width Parameter on Drift Distance

Scan 400ns High Field

r ≈ 0.93

PRF "new"

ΪĻ

<u>Run 2180 (Peaking = 400ns Drift = 5cm R < 1.0)</u>

PRF "new"

ilc

W

PRF dependency in ϕ

Example: Two-track finding per row

PRF for Two Tracks (Centred on Left Track)

U N I V E R S I T Y

Future Plans

- Implement PRF Parameterization with Errors
 - Reconstruction in 3D (x,y,z) and properly account for errors when calibrating the PRF, such that the PRF can be used to find 3D hits and their errors in Marlin
- Implement PRF Calibration in Marlin
 - The calibration process formaly done in the FTPC code now ported to Marlin. This will allow direct calibration with the multi-module prototype, which could potentially return better parameterizations from previous prototypes
- Simulation Signals: $N_{electron/ion} \rightarrow (A,t) \rightarrow PRF$
 - Full understanding of ionization, transport, geometry, and electronics response for 3D tracks

•Concurrently developing simulation of Micromegas detector

•The procedure for the analysis is, basically

The simulation will perform the following calculations,

And this will fit in with the analysis work, by simply replacing the detector data with the simulated data in the analysis procedure.

Summary

2011 (single module) Average number of pad per hit per row is 4.5

2012 (7-module) First look hit based Average number of pad per hit per row is 2.1 leads to artificial narrower PRF [less stat]

2012 (7-module) **New MarlinTPC** Track/PRF fit

3.226

Summary

Is was there smaller ?

|||

More "triangular" looking PRF in 2012 due to less pad hits per row

Small bias of track position to be on pads

2011 (single module) Average number of pad per hit per row is **4.5**

2012 (7-module) First look hit based Average number of pad per hit per row is **2.1** leads to artificial narrower PRF [less stat]

2012 (7-module) New MarlinTPC Track/PRF fit Pad cross-talk

2011 Run# 1229 No Cut

Hit per row (2012) = 2.1

IIL

Hit per row (2012) = 2.4

2012 Run# 2185 Threshold 25 Min Pulses 1

IL

OVERVIEW

- Look at 2012 data
 - Resolution acceptable (see Wenxin's talk)
 - MarlinTPC used for data analysis of 7-module data
 - Now can fit PRF and/or tracks
- Diagnostics:
 - Need to measure the characteristics of the resistive layer and induction gap (need feedback from engineers and design electronic experts)
 - More noise so higher threshold
 - It leads to less hit per row (4.5 \rightarrow 2.1)
 - Narrower PRF
 - Other effects to be investigated and corrected
 - Cross talk
 - Bias estimators (position on row)

Still to do...

- Future...
 - Alignment is a easy extension of (extra d.o.f.)
 PRFBasedTrackFinderProcessor
 - Two tracks resolution
 - Synthetic data (test full fit)
 - dE/dx

Conclusion

- Progress toward PRFBasedTrackFinderProcessor
 - Second implementation in MarlinTPC soon completed
 - Investigation of error on amplitude and time (A,t)
 - Pad Response Function (PRF) to define a hit in 3D
 - Investigate φ dependency
 - Transverse resolution versus Z (σ_0 and N_{eff}) of a hit as well as longitudinal resolution (time resolution) to be used for later "track fitting" (PRF-track is chicken-egg)
 - Ready for 9-module testbeam (end of January 2013)
 - Expect improvement for new modules
- Long Term:
 - Handling Error from (A,t) \rightarrow (PRF,t) \rightarrow (x,y,z) for a Hit to
- find unbiased track estimators and their uncertainties
 - Simulation of amplitude and time (A,t) to close the loop