## Analysis of Testbeam Data .

#### A. Münnich

DESY Analysis Meeting, 11.12.2012





- Test Beam Analysis Library
- Reconstruction and Analysis
- Calibration
- Field Distortions



# **Test Beam Analysis Library**

### Software package for

- First reconstruction and analysis of test beam data
- Developing code and fast testing based on root
- Classes can be used in Marlin processors for final analysis

### What it does

Generation of control plots for different steps of analysis

- 1 Raw data
- 2 Pedestals
- 8 Pulses
- 4 Hits
- 6 Tracks

Data structure to be written into root trees for fast plot generation



## **Example Plots**





# **Example Plots**





# **Example Plots**







# **Reconstruction and Analysis: Methods**

- Single point resolution without external reference
- Drift velocity and handling of offsets
- Determination of cathode and anode position from data

## To Do:

- Agree on set of well defined methods.
- Share code (MarlinTPC).
- $\rightarrow$  Cross check results between groups.



# **Calibration and Field Distortions**

### Calibration

- Electronics and gain of MPGD
- $\rightarrow$  Necessary for uniformity studies

### **Distortions form E and B fields**

- Understanding the systematics
- How to correct for it?
  - · Correction based on data itself
  - Use parametrisation
  - Prediction from field maps

### Alignment

For the moment only between modules. How precise doe we know the module position? Should we allow alignment of modules based on data? (probably not)



## **Common Analysis**

### Make available on the grid:

- 🚺 Raw data
- Onverted data (lcio)
- 📀 Gear file

### Put into data base:

- Electronics parameter
- Ohannel mapping
- Onditions data if available

### Use MarlinTPC to develop code!

