Field distortions introduced by the DESY module

Klaus Zenker

January 8, 2013

Motivation for the study

Investigate field distortions introduced by the DESY module.

- Use finite element based software to simulate electrostatic fields (CST[™])
- 2. Use GARFIELD++ to drift electrons in that field and add constant *B*-field

Settings

Drift field:		potential
• $E_{ m drift} = 220 m V/cm$ in	PEC	0 V
z-direction	GEM III	-1200 V
Gas:	GEM II	-1800 V
▶ T2K gas (95 % Ar,	GEM I	-2200 V
3% CF ₄ , 2% iC ₄ H ₁₀)	Copper dummy	-2200 V
Drift distance:	boundary	-2750 V
$\blacktriangleright d_{\rm drift} = 25 {\rm mm}$	(at $z_{\rm max}$)	
dint		

Electric field transverse to the drift field E_t (x - z plane)

Example of the electron drift (without magnetic field)

Analysis

- 1. Drift 200 electrons starting from one position in the drift volume towards the module.
- 2. Stop the drift directly above the module and analyse the end positions.
- 3. Repeat this for different start positions along a line above the module and transverse to the drift field (here in *x*-direction)
- Assumption: If there are enough start positions and the distance between them is small enough a uniform charge distribution above the module can be assumed.
 - 4. Project the pad rows to the top of the module and count how much electrons end on each.
 - \Rightarrow A uniform distribution leads to the same number of electrons on each row.

Result of the analysis (without magnetic field)

Fig.: Number of electrons on a certain row position normalised to electrons on row 6.

Fig.: Test beam result from July 2011 showing decreased charge collection on rows at the border of a readout module. This measurement was taken without a magnetic field.

Modifications of the module – $E_t (x - z \text{ plane})$

Fig.: One wire. $(\phi = 150 \, \mu m)$

Results with modifications (no magnetic field)

Figure: Number of electrons on a certain row position normalised to electrons on row 6. Results for different possibilities of modifying the readout module are shown.

Results with modifications (B = 1 T)

Fig.: Number of electrons on a certain row position normalised to electrons on row 6. Results for different possibilities of modifying the readout module are shown.

Fig.: Test beam result from July 2012 showing a less decreased charge collection on rows at the border of a readout module compared to the dafault DESY module. The modification used in the experiment corresponds to the best wire option.

Analysis in the module surface (x - y plane)

- Transverse diffusion is reduced with magnetic field
- Displacements due to $E \times B$ effects are visible with $B = 1 \,\mathrm{T}$
- The first row is at $x = 0.1 \,\mathrm{cm}$
- \Rightarrow At this position: $\delta y \approx 50 \, \mu {
 m m}$
 - This is close to the value observed and shown by Wenxin Wang in the last analysis meeting

Number of entries

Analysis in the module surface plane (x - y)

One wire attached to the module:

- Reduced displacements:
- \Rightarrow At the first row: $\delta y pprox 25\,\mu{
 m m}$

Number of entries

Analysis in the module surface plane (x - y)

One strip attached to the module:

- Displacements nearly vanished
- Only diffusion spreads the signal

13

Number of entries

Conclusions

- Simulation results are in good agreement with measurements
- Optimisation based on the simulation was done in case of the DESY module
- First measurement with a wire attached to the DESY module showed promising results
- A paper summering the results will be available soon

