

Maximal number of events stored in SKIROC

Trong Hieu TRAN Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3

CALICE Collaboration meeting, Hamburg 20–22 March, 2013

Outline

- Motivation & ILC accelerator parameters
- Occupancy study & main background
- Summary

ILC - luminosity

- Current design of SKIROC 2:
 - each chip serves 64 channels
 - Buffer can carry up to 15 events in one spill, currently w/o zerosuppression

High xsection processes at $\sqrt{s} = 500$ GeV

Beam polarisation: eL, pR

Proc. name	Proc. Type	Pola1	Pola2	σ (pb)
$\gamma\gamma \rightarrow ddbar$	aa_lowpt	L80	R20	633224.0
$\gamma\gamma \rightarrow \mu\mu$	aa_2f	В	В	832.0
$e\gamma \rightarrow e\gamma$	1f_3f	L	В	547.0
$\gamma c \rightarrow e e$	aa_2f	В	В	425.8
$e\gamma \rightarrow e\gamma$	1f_3f	L	W	345.4
$\gamma e \rightarrow e \gamma$	1f_3f	W	R	345.1
	2f_Z_hadronic	L	R	32.5
	4f_WW_semileptonic	L	R	9.5
	4f_WW_semileptonic	L	R	7.8
	4f_WW_hadronic	L	R	7.7
	4f_singleZee_leptonic	L	R	7.3

Photon beam:

Very strong focused beam: large charge density \rightarrow large EM field \rightarrow beamstrahlung in the other beam Interactions:

- electron-photon
- photon-photon

Pola1	Pola2	σ (pb)
В	В	230318.0
В	W	152207.0
W	В	152174.0
W	W	98525.1

Beam induced background

Process name: ee pairs Simulated for each bunch crossing. → main background. Not included yet.

Analysis procedure

- Geometry: ECAL is composed of barrel, endcap & endcap ring.
- Samples for DBD, ILD_01_v05. 600K events in total.
- Get hit information from simulation (position, ID, energy, ...)
- The chip is fired only if the Geant4 hit energy pass a threshold, 0.3 MIP
- For each event, if one or more cell is fired, the corresponding chip will be activated (each chip is an OR for 64 channels)

 $N_{\rm MC}$: total number of MC events which fire the chip corresponds to lumi $L_{\rm MC}$ Scaled to spill luminosity of 4nb-1 by:

 $N_{spill} = N_{MC} \times L_{spill} / L_{MC}$

Gamma-gamma at low pt is dominant

• double photon production (including beamstrahlung) process is the dominant source for ECAL in the forward region

All process but gamma-gamma

All processes

ECAL Ring occupancy (1)

2 Rings, each has 29 layers.

ECAL Ring occupancy (2)

Reminder: Maximum 15 events can be carried by SKIROC 2 in one spill.

In Endcap ring, the maximum of average of recorded number of events can reach 11!

Maximum number of events firing a same chip in a layer Boundary not included.

ECAL Ring occupancy (3)

Mean value of number of events / chip /spill taken along R direction (position of chip)

Maximum at 10.

ECAL EndCap

Maximum number is \sim 5 in the Endcap.

ECAL Barrel

ECAL Barrel (2)

Mean number of events along layers.

Summary

- Maximal average occupancy in Ecal Ring region is in average ~10 (± < 0.1^{stat}) events per chip per spill. Boundary not included.
- Number of events is Poisson distributed, can fluctuate above 15

$$CDF = \sum_{i>n}^{\infty} \frac{e^{-\mu}\mu^i}{i!}$$

- Beam induced background not included yet.
- We need safety margin for:
 - Upgrade in luminosity (instantaneous or peak luminosity) or in c.m. energy.
 - Accelerator change, e.g. duration of the spill
 - possible retriggering in events with BX+1, BX+2, ..., BX+15.
- What to do with the Ecal Ring?
 - new chip? (matrix is expensive!)
 - one chip serves 32 channels (now 64)
 - \rightarrow new PCB, cooling, ...

Backup

ILC parameters

Parameter	Symbol/Units	Nominal	Low N	Large Y	Low P
Repetition rate	f_{rep} (Hz)	5	5	5	5
Number of particles per bunch	$N \ (10^{10})$	2	1	2	2
Number of bunches per pulse	n_b	2625	5120	2625	1320
Bunch interval in the Main Linac	t_b (ns)	369.2	189.2	369.2	480.0
in units of RF buckets		480	246	480	624
Average beam current in pulse	$I_{ave} (\mathrm{mA})$	9.0	9.0	9.0	6.8
Normalized emittance at IP	$\gamma \epsilon_x^* \text{ (mm·mrad)}$	10	10	10	10
Normalized emittance at IP	$\gamma \epsilon_y^* \; (\text{mm·mrad})$	0.04	0.03	0.08	0.036
Beta function at IP	$\beta_x^* \text{ (mm)}$	20	11	11	11
Beta function at IP	$\beta_y^* \; (\mathrm{mm})$	0.4	0.2	0.6	0.2
R.m.s. beam size at IP	$\sigma_x^* (\mathrm{nm})$	639	474	474	474
R.m.s. beam size at IP	$\sigma_y^* \; (\mathrm{nm})$	5.7	3.5	9.9	3.8
R.m.s. bunch length	$\sigma_z \; (\mu { m m})$	300	200	500	200
Disruption parameter	D_x	0.17	0.11	0.52	0.21
Disruption parameter	D_y	19.4	14.6	24.9	26.1
Beamstrahlung parameter	Υ_{ave}	0.048	0.050	0.038	0.097
Energy loss by beamstrahlung	δ_{BS}	0.024	0.017	0.027	0.055
Number of beamstrahlung photons	n_{γ}	1.32	0.91	1.77	1.72
Luminosity enhancement factor	H_D	1.71	1.48	2.18	1.64
Geometric luminosity	$\mathcal{L}_{geo} \ 10^{34}/\mathrm{cm}^2/\mathrm{s}$	1.20	1.35	0.94	1.21
Luminosity	$\mathcal{L} \ 10^{34}/\mathrm{cm}^2/\mathrm{s}$	2	2	2	2

Hit distrubution in theta

In these processes the events tend to has higher cross section toward beam pipe.

(Histograms are not normalised neither absolutely nor relatively.)

Threshold

PDG: Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value δp/x. Energy threshold at 5×10⁻⁵ GeV ~ 0.3 Mip

Number of hits in function of hit energy for one train.

Histograms are scaled by luminosity & X-section.

ECAL Barrel

Number of events per chip for each layer.

Nb of events per chip / spill

Zero suppression. Only fired channels are stored.