Maximal number of events stored in SKIROC

Trong Hieu TRAN
Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3

CALICE Collaboration meeting, Hamburg 20-22 March, 2013

Outline

- Motivation \& ILC accelerator parameters
- Occupancy study \& main background
- Summary

ILC - luminosity

- Current design of SKIROC 2:
* each chip serves 64 channels
* Buffer can carry up to 15 events in one spill, currently w/o zerosuppression

Luminosity
$\mathrm{L} \sim 2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\rightarrow Spill luminosity $\sim 2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \times 200 \mathrm{~ms}=4 \mathrm{nb}^{-1}$.

High \times section processes at $\sqrt{s}=500 \mathrm{GeV}$

Analysis procedure

- Geometry: ECAL is composed of barrel, endcap \& endcap ring.
- Samples for DBD, ILD_o1_v05.600K events in total.
- Get hit information from simulation (position, ID, energy, ...)
- The chip is fired only if the Geant4 hit energy pass a threshold, 0.3 MIP
- For each event, if one or more cell is fired, the corresponding chip will be activated (each chip is an OR for 64 channels)
$N_{M C}$: total number of $M C$ events which fire the chip corresponds to lumi $L_{M C}$ Scaled to spill luminosity of $4 \mathrm{nb}^{-1}$ by:

$$
N_{\text {spill }}=N_{M C} \times L_{\text {spill }} / L_{M C}
$$

Gamma-gamma at low pt is dominant

- double photon production (including beamstrahlung) process is the dominant source for ECAL in the forward region

All process but gamma-gamma

All processes

ECAL Ring occupancy (1)

2 Rings, each has 29 layers.

ECAL Ring occupancy (2)

Reminder: Maximum 15 events can be carried by SKIROC 2 in one spill.

In Endcap ring, the maximum of average of recorded number of events can reach 11!

Maximum number of events firing a same chip in a layer
Boundary not included.

ECAL Ring occupancy (3)

Mean value of number of events / chip /spill taken along R direction (position of chip)

Maximum at 10.

ECAL EndCap

Maximum number is ~ 5 in the Endcap.

Example for one stave of 1 endcap, 1 layer

ECAL Barrel

Example of occupancy for one layer of a module. (Similar for other modules, all staves are similar.

Maximum number of events in function of layer (for all modules, all staves)

ECAL Barrel (2)

Mean number of events along layers.

Summary

- Maximal average occupancy in Ecal Ring region is in average ~ 10 (\pm < $\left.0.1^{\text {stat }}\right)$ events per chip per spill. Boundary not included.
- Number of events is Poisson distributed, can fluctuate above 15

$$
C D F=\sum_{i>n}^{\infty} \frac{e^{-\mu} \mu^{i}}{i!}
$$

- Beam induced background not included yet.
- We need safety margin for:

- Upgrade in luminosity (instantaneous or peak luminosity) or in c.m. energy.
- Accelerator change, e.g. duration of the spill
- possible retriggering in events with $B X+1, B X+2, \ldots, B X+15$.
- What to do with the Ecal Ring?
- new chip? (matrix is expensive!)
- one chip serves 32 channels (now 64) \rightarrow new PCB, cooling, ...

Backup

ILC parameters

Beam and IP Parameters for 500 GeV cms.

Parameter	Symbol/Units	Nominal	Low N	Large Y	Low P
Repetition rate	$f_{\text {rep }}(\mathrm{Hz})$	5	5	5	5
Number of particles per bunch	$N\left(10^{10}\right)$	2	1	2	2
Number of bunches per pulse	n_{b}	2625	5120	2625	1320
Bunch interval in the Main Linac	$t_{b}(\mathrm{~ns})$	369.2	189.2	369.2	480.0
in units of RF buckets		480	246	480	624
Average beam current in pulse	$I_{a v e}(\mathrm{~mA})$	9.0	9.0	9.0	6.8
Normalized emittance at IP	$\gamma_{x}^{*}(\mathrm{~mm} \cdot \mathrm{mrad})$	10	10	10	10
Normalized emittance at IP	$\gamma \epsilon_{y}^{*}(\mathrm{~mm} \cdot \mathrm{mrad})$	0.04	0.03	0.08	0.036
Beta function at IP	$\beta_{x}^{*}(\mathrm{~mm})$	20	11	11	11
Beta function at IP	$\beta_{y}^{*}(\mathrm{~mm})$	0.4	0.2	0.6	0.2
R.m.s. beam size at IP	$\sigma_{x}^{*}(\mathrm{~nm})$	639	474	474	474
R.m.s. beam size at IP	$\sigma_{y}^{*}(\mathrm{~nm})$	5.7	3.5	9.9	3.8
R.m.s. bunch length	$\sigma_{z}(\mu \mathrm{~m})$	300	200	500	200
Disruption parameter	D_{x}	D_{y}	0.17	0.11	0.52
Disruption parameter	D_{y}	0.21			
Beamstrahlung parameter	$\Upsilon_{a v e}$	19.4	14.6	24.9	26.1
Energy loss by beamstrahlung	$\delta_{B S}$	0.048	0.050	0.038	0.097
Number of beamstrahlung photons	n_{γ}	0.024	0.017	0.027	0.055
Luminosity enhancement factor	H_{D}	1.32	0.91	1.77	1.72
Geometric luminosity	$\mathcal{L}_{g e o} 10^{34} / \mathrm{cm}^{2} / \mathrm{s}$	1.20	1.35	0.94	1.21
Luminosity	$\mathcal{L} 10^{34} / \mathrm{cm}^{2} / \mathrm{s}$	2	2	2	2

Hit distrubution in theta

In these processes the events tend to has higher cross section toward beam pipe.

(Histograms are not normalised neither absolutely nor relatively.)

Threshold

PDG: Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value $\delta p / x$.

Energy threshold at $5 \times 10^{-5} \mathrm{GeV} \sim 0.3 \mathrm{Mip}$

Number of hits in function of hit energy for one train.
Histograms are scaled by luminosity \& X -section.

ECAL Barrel

Number of events per chip for each layer.

Nb of events per chip / spill

Zero suppression.
Only fired channels are stored.

