Calibration of Pion and Positron Showers with Longitudinal Weights

Jacob Smith

University of Texas and Arlington and Argonne National Laboratory

CALICE Collaboration Meeting DESY, Hamburg, Germany March 20 – 22, 2013

Motivation and Method

Goal: Improve pion/positron energy resolution.

Method: Identify the interaction layer IL. Apply weights to hits in each layer following the IL, such that the resolution of E^{w}_{rec} is minimized.

Similar method previously proposed for the ATLAS and D0 ECALs. However only tested at one energy point.

Our method developed for the 6 - 60 (6 - 32) GeV energy range for pions (positrons)

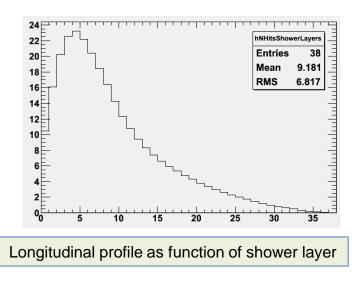
Definitions

Weighted reconstructed energy $E_{rec}^{w} - eq$. (1), where H_i is the sum of hits in layer i corrected with the specific efficiency and multiplicity of this layer

(1)
$$E_{rec}^{w} = \sum_{i=0}^{IL-1} H_i + \sum_{i=IL}^{n} w_i H_i$$

 $H_i = c_i H_i$, where $c_i = \frac{\varepsilon_0 \mu_0}{\varepsilon_i \mu_i}$, and $H_i = \sum_{hits} 1$

Average number of hits in layer i μ_i – eq. (2)



(2)
$$\mu_i = \frac{\sum_{k}^{N_i} H_i^{(k)}}{N_i}$$

Covariance of number of hits in layer I $C_{i,j}$ – eq. (3)

(3)
$$C_{i,j} = \frac{\sum_{k}^{N_{i,j}} \left(H_i^{(k)} - \mu_i \right) \left(H_j^{(k)} - \mu_j \right)}{N_{i,j} - 1}$$

for (2) and (3), i,j refers to a layer within the shower, so all physical layers are not involved in every event, hence N_i and $N_{i,j}$

Derivation of Weights

Mean and variance of E^{w}_{rec} are

$$\mu \left(E_{rec}^{w} \right) = \sum_{i} w_{i} \mu_{i}$$
$$\sigma^{2} \left(E_{rec}^{w} \right) = \sum_{i,j}^{i} w_{i} w_{j} C_{i,j}$$

Energy resolution in terms of weights (using a vector notation)

$$\frac{\sigma(E_{rec}^{w})}{\mu(E_{rec}^{w})} = \frac{\sqrt{\vec{w}^{T}C\vec{w}}}{\vec{w}^{T}\vec{\mu}}$$

Minimize resolution with respect to weights

$$ec{w} = \lambda \left(C^{-1} ec{\mu}
ight)$$

 $w_i = \lambda \sum_{j=1}^{-1} C_{i,j}^{-1} \mu_i$

Vector notation or weight of layer i

 $\Rightarrow \left(\vec{w}^T \vec{\mu}\right)\vec{w} = \left(\vec{w}^T C \vec{w}\right)C^{-1}\vec{\mu}$

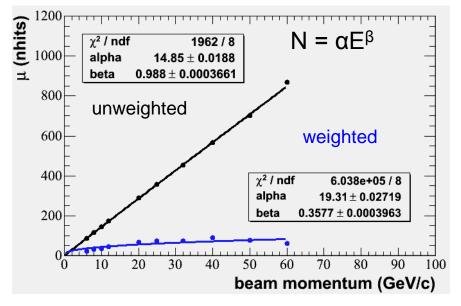
 $= \frac{1}{\left(\vec{w}^T \vec{\mu}\right)^2} \left[\frac{\left(C\vec{w}\right)\left(\vec{w}^T \vec{\mu}\right)}{\sqrt{\vec{w}^T C \vec{w}}} - \vec{\mu} \sqrt{\vec{w}^T C \vec{w}} \right]$ $= \frac{\left[C\vec{w}\vec{w}^T \vec{\mu} - \vec{\mu}\vec{w}^T C \vec{w}\right]}{\left(\vec{w}^T \vec{\mu}\right)^2 \sqrt{\vec{w}^T C \vec{w}}}$

 $0 = \frac{\partial}{\partial \vec{w}^T} \left(\frac{\sqrt{\vec{w}^T C \vec{w}}}{\vec{w}^T \vec{\mu}} \right)$

 λ is a normalization constant yet to be determined (hint: sets the energy scale of $E^w_{\ rec})$

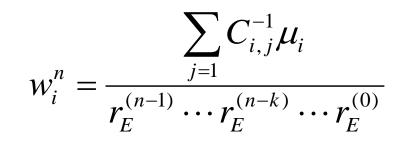
Normalization of Weights

Before normalization

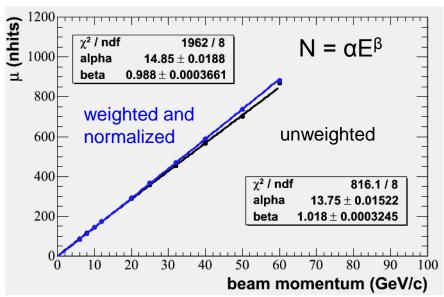


Normalization strategy: apply iterative corrections r_{E}^{n} to E_{rec}^{w} $r_{E}^{n} = \mu_{E}^{n}/(E^{*}14.74)$, where

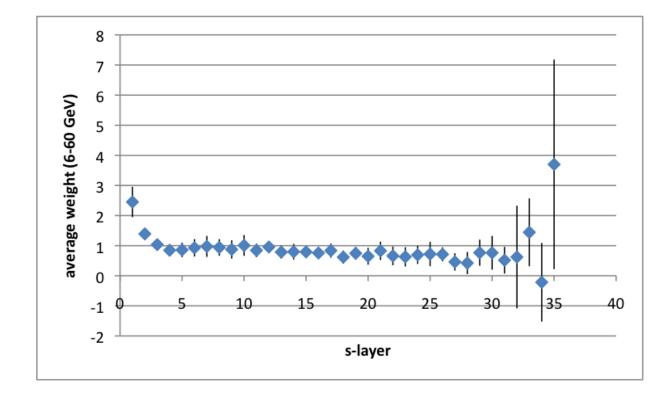
 μ^{n}_{E} – blue points 14.74 hits/GeV – pion sampling term n – iteration index



After two iterations

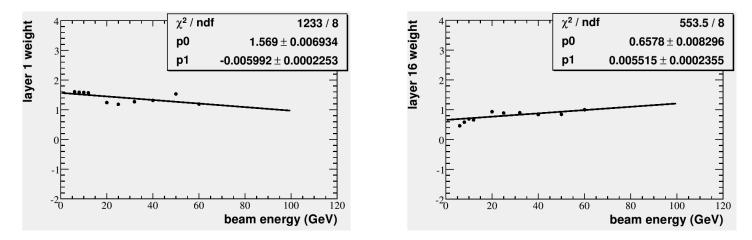


Average weights as function of layer number



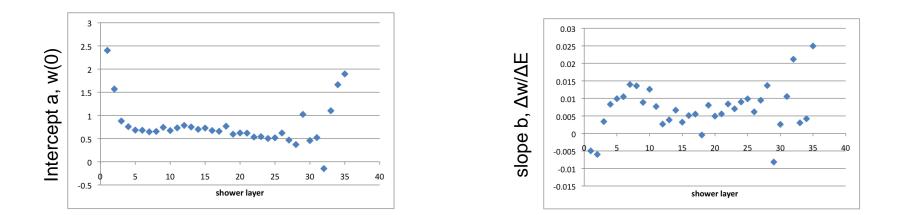
Deviation from 1 for first layers Slight decrease with increasing layer number

Parameterization of Weights in Each Layer



Fit weight in each layer to a straight line

 $w_i(E) = a_i + b_i^*E$



Estimate of Uncertainties in Weights

Propagate uncertainties in weights calculation Mean μ and covariance matrix C⁻¹ have correlated uncertainties -> Monte-Carlo approach to calculate uncertainties of weights W_i

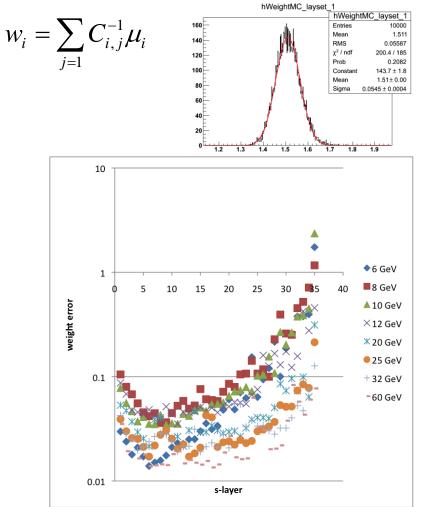
1) diagonalize μ and C_{ij} to get uncorrelated uncertainties (diagonal C_{ij} means no correlations between layers)

$$\hat{C}_{rs} = \sum_{i,j} U_{ri} U_{sj} C_{ij} \quad \hat{\mu}_r = \sum_i U_{ri} \mu i$$

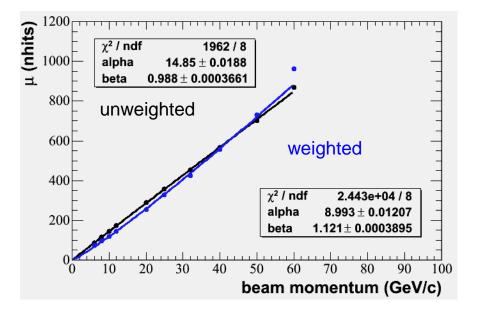
2) Monte-Carlo Procedure

- a) smear C_{rs} with a χ^2 and mean μ_r with a Gaussian distribution
- b) transform \hat{C}_{rs} and μ_r back to real space, C*-1, μ^*
- c) calculate a smeared weight, w*

3) Get RMS from each generated w* distribution \rightarrow uncertainty on w_i



Weights Applied to Data Pions



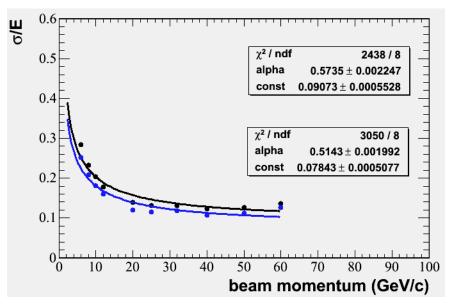
Parameterizations aren't perfect

-> slight degradation of linearity

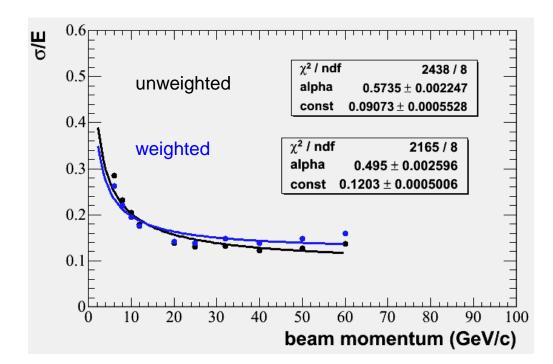
Resolution using the weights at the corresponding beam energy

-> 10% improvement in resolution

This is a cheat, as in a real experiment the energy of the incident particle is not known



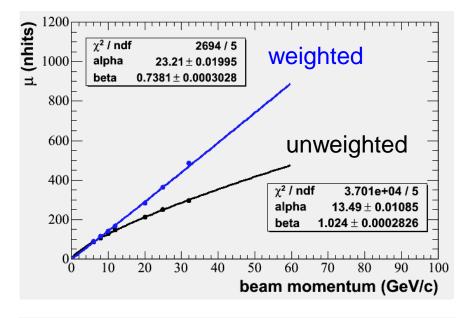
Weights Applied to Data Pions



Energy of event determined from $N = \Sigma H_i$

Slight improvement of resolution for E < 20 GeVWorse resolution for E > 20 GeV

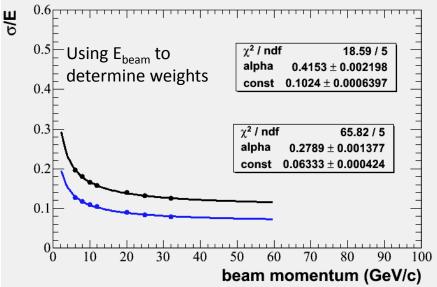
Weights Applied to Simulated Positrons

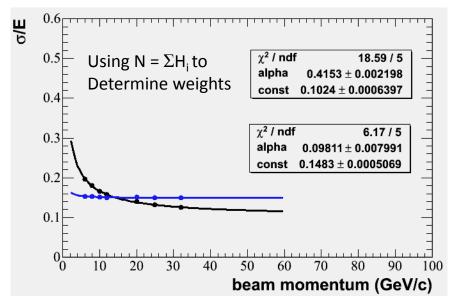


Same procedure applied to positrons

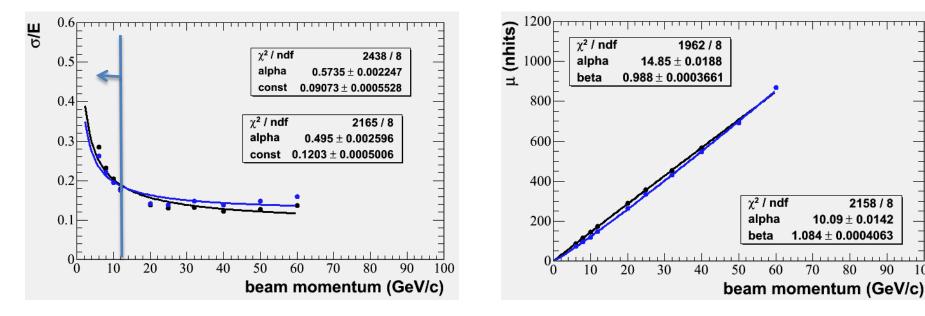
Resolution improves by 35% when using known $\rm E_{\rm beam}$

Using N = Σ H_i improves resolution for E< 15 GeV, degrades resolution for E> 15 GeV





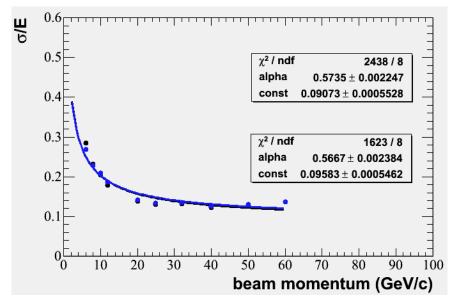
Weights in Improved E-Range



Apply longitudinal weights for E < 15GeV = 220 hits

Apply unity weights for E > 15 GeV

-> Improvement gone!



90

100

Summary of Weights Application

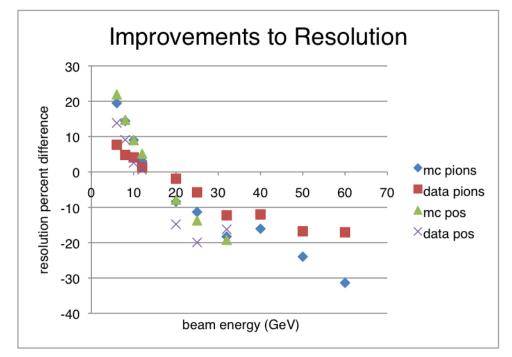
Apply weighting to... Pions – MC and Data Positrons – MC and Data

Plot the percent difference between weighted resolutions and unweighted resolutions

0 line is unweighted case Positive values are improvement to energy resolution

In all cases resolution is improved below 12 GeV but degradation increases with energy

MC and Data only agree in behavior but actual values are quite different



Limitation on resolution seems to be dominated by fluctuation of $N = \Sigma H_i$

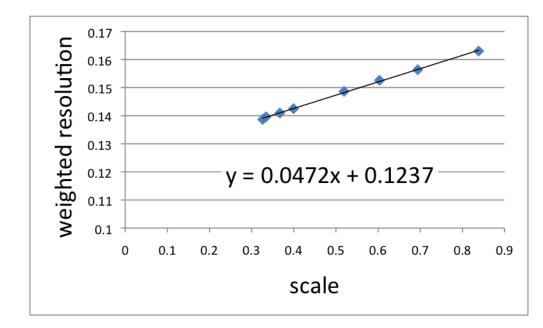
Limitation of Improvement

Artificially reduce the fluctuations from weight selection

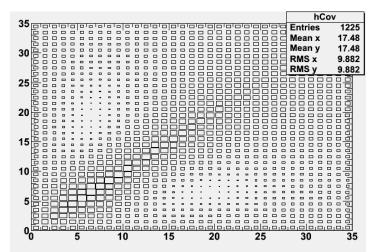
 $\sigma_N' = scale^* \sigma_N$

Improvement scales with resolution of $N = \Sigma H_i$

50 GeV Pions

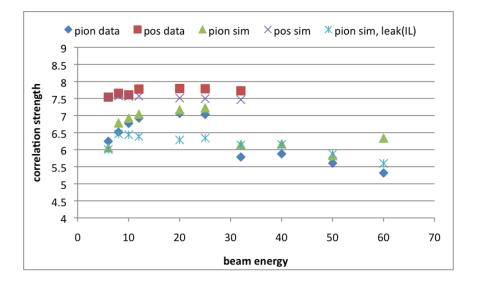


Correlation Strength



Does strength of correlations matter? Correlation matrix for pions at 50 GeV Diagonal matrix means no correlations Larger S \rightarrow larger correlations

$$S = \frac{\sum R_{ij} N_{ij}}{\sum N_{ij}}$$



Pions show a slight dependence on energy, positrons almost none

Changes in correlations strength do not explain why weighted resolutions improve for E < 12 GeV

Conclusions

- In order to improve the DHCAL energy resolution, hits in layers are weighted differently
- The method was applied to Pions/positrons Data/MC
- Resolutions are improved without knowledge of beam energy, but only for E < 15 GeV
- Application of the method depends on the initial resolution of the number of hits