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Motivation and  Method  
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Goal: Improve pion/positron energy resolution. 

 

Method: Identify the interaction layer IL.  Apply weights to hits in each 

layer following the IL, such that the resolution of Ew
rec is minimized. 

 

Similar method previously proposed for the ATLAS and D0 ECALs. 

However only tested at one energy point. 

 

Our method developed for the 6 – 60 (6 – 32) GeV energy range for 

pions (positrons)  



Definitions 

2 



(3)    Ci, j 
Hi

(k )  i H j

(k )   j 
k

N i , j


N i, j 1



(1)    Erec
w  Hii0

IL1

  wiHiiIL

n



Hi  ciH'i , where ci 
00

ii
,  and H'i  1

hits





(2)    i 
Hi

(k )

k

N i


N i

Average number of hits in layer i μi  

– eq. (2)  

for (2) and (3), i,j refers to a layer within 

the shower, so all physical layers are not 

involved in every event, hence Ni and Ni,j 

Weighted reconstructed energy Ew
rec  –  

eq. (1), where Hi is the sum of hits in 

layer i corrected with the specific 

efficiency and multiplicity of this layer  

Longitudinal profile as function of shower layer 

Covariance of number of hits in layer I Ci,j   

– eq. (3)  



Derivation of Weights 
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Minimize resolution 

with respect to weights 
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λ is a normalization constant yet to be determined 

(hint: sets the energy scale of Ew
rec)  

Energy resolution in terms of weights  

(using a vector notation)  
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Mean and variance of Ew
rec are 

Vector notation 

or weight of layer i 



Normalization of Weights 
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Before normalization 

unweighted 

weighted 

N = αEβ 
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After two iterations 

Normalization strategy: apply iterative 

corrections  rn
E to Ew

rec 

rn
E  = μn

E/(E*14.74), where 

 

     μn
E – blue points 

     14.74 hits/GeV – pion sampling term 

     n – iteration index  

N = αEβ 

weighted and 

normalized unweighted 



Average weights as function of layer number 
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Deviation from 1 for first layers 
Slight decrease with increasing layer number 



Parameterization of Weights in Each Layer 
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Fit weight in each layer to a straight line 

 

            wi(E) = ai + bi*E 
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Estimate of Uncertainties in Weights 
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Propagate uncertainties in weights calculation 
Mean μ and covariance matrix C-1 have 
correlated uncertainties 
 -> Monte-Carlo approach to calculate 
uncertainties of weights 

2) Monte-Carlo Procedure 
 
a) smear Crs with a χ2 and mean μr 

with a Gaussian distribution 

b) transform Ĉrs and μr back to 
real space, C*-1, μ* 

c) calculate a smeared weight, w* 

3) Get RMS from each generated w* 
distribution  uncertainty on wi 

1) diagonalize μ and Cij to get uncorrelated 
uncertainties (diagonal Cij means no 
correlations between layers) 



Weights Applied  to Data Pions 
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Parameterizations aren’t perfect  

 

  -> slight degradation of linearity 
weighted 

unweighted 

Resolution using the weights at the 

corresponding beam energy 

 

         -> 10% improvement in resolution 

 
      This is a cheat, as in a real experiment the 

       energy of the incident particle is not known 



Weights Applied  to Data Pions 
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Energy of event determined from N = ΣHi 

 

Slight improvement of resolution for E < 20 GeV 

Worse resolution for E > 20 GeV 

weighted 

unweighted 



Weights Applied  to Simulated  Positrons 

10 

Same procedure applied to positrons 

 

Resolution improves by 35% when 

using known Ebeam 

 

Using N = ΣHi improves resolution for 

E< 15 GeV, degrades resolution for E> 

15 GeV   

weighted 

unweighted 

Using Ebeam to 
determine weights 

Using N = ΣHi to  
Determine weights 



Weights in Improved E-Range 
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Apply longitudinal weights for E < 15 

GeV = 220 hits 

 

Apply unity weights for E > 15 GeV 

 

 -> Improvement gone! 



Summary of Weights Application  
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Apply weighting to… 

Pions – MC and Data 

Positrons – MC and Data 

 

Plot the percent difference between 

weighted resolutions and unweighted 

resolutions 
 

   0 line is unweighted case 

   Positive values are improvement to 

    energy resolution 

 

In all cases resolution is improved 

below 12 GeV but degradation 

increases with energy  

 

MC and Data only agree in behavior 

but actual values are quite different  

Limitation on resolution seems to be 

dominated by fluctuation of N = ΣHi 



Limitation of Improvement 
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Artificially reduce the fluctuations 

from weight selection 

 

  σN
’ = scale*σN 

 

Improvement scales with resolution 

of N = ΣHi 50 GeV Pions 



Does strength of correlations matter? 

Correlation matrix for pions at 50 GeV 

Diagonal matrix means no correlations 

Larger S  larger correlations 

 

 

 

 

 

Pions show a slight dependence on 

energy, positrons almost none 

 

Changes in correlations strength do not 

explain why weighted resolutions improve 

for E < 12 GeV 

Correlation Strength 
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Conclusions 

• In order to improve the DHCAL energy resolution, 

hits in layers are weighted differently 

 

• The method was applied to Pions/positrons 

Data/MC 

 

• Resolutions are improved without knowledge of 

beam energy, but only for E < 15 GeV 

 

• Application of the method depends on the initial 

resolution of the number of hits 
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