Response of SDHCAL to Mips

Yacine Haddad

LLR - Ecole Polytechnique On behalf of the GRPC-SDHCAL Groupe.

20/03/2013

Yacine I	Haddad	(LLR)
----------	--------	-------

*ロト *個ト * ヨト * ヨト

Outline

- Test beam data analysis
- Only run for Aug/Sep and November periods are used here.
- GRPC uniformity measurement & fine structure.
- Threshold scan & Digitizer input.
- This presentation is an update of muon and cosmic analysis. see my presentations at Cambridge CALICE 20&21/09/2012 at Cambridge & 03/2012 at Shinshu.

http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=197404 http://ilcagenda. linearcollider.org/getFile.py/access?contribId=13&sessionId=8&resId=0&materialId=slides&confId=5686 https:// ilcagenda.linearcollider.org/getFile.py/access?contribId=59&sessionId=4&resId=0&materialId=slides&confId=5484

track reconstruction steps

- Clustering of hits performed in each layer using closest neighbor clustering.
- The position of the cluster is taken as center of gravity of the contained hits. The error on this position is calculated as *X* and *Y* spread divided by $\sqrt{12}$. The errors are obtained by calculating the variance of flat distribution for which $\sigma_{x,y} = l_{x,y}/\sqrt{12}$ ($l_{x,y}$ is the length of the cluster in each direction)
- Clean the event by removing the farther hits.
- The Mip's track reconstruction is based on the χ^2 minimization.
- The Track are supposed the straight lines with 4 parameters.

Angular distribution

- Using the parameters of the reconstructed track, its angles can be calculated.
- heta & ϕ are the angles on the (X,Z) and (Y,Z) plane respectively.
- η is defined as the angle between the reconstructed track and the normal of the detector layer.

▲ロト ▲御 ト ▲ 陸 ト ▲ 陸 ト

Cut List

Several cuts are used for Mip's selection : for Layer

- $N_{layer}(K < 10) \ge 5$ and $N_{layer}(K > 40) \ge 5$ (for penetrating Mons).
- For Layer i : Nⁱ_{cluster} ≤ 1 (remove the track making interactions).
- $\chi^2 <$ 20 (track goodness)
- N_{hit} < 200 (exclude e / π ..)
- For cluster j : N^j_{hit} < 5</p>
- $(\Delta x^2 + \Delta y^2)^{1/2} < 2cm$ (for efficiency measurement)
- no Alignment correction !
- following runs was taken for the threshold scan from Sptember 2012 period : 715766,715772,715776,715779,715782,715785,715773,715777 ,715780,715786,715770,715775,715781,715784,715787,715768 ,715783,715778
- for the other studies we was take muons from energy scan run Aug/Sep 2012 period : 715480, 715511, 715593, 715596, 715671, 715693, 715491, 715531, 715594, 715612, 715675, 715694, 715493, 715551, 715595, 715651, 715692, 715695

<ロト < 回 > < 回 > < 回 > < 回 > 、

efficiency & Multiplicity estimation

- The local efficiency and multiplicity were measured by using the other chambers to reconstruct particle tracks and determining the expected hit position in the considered one. The multiplicity µ is defined as the number of fired pads within 2 cm of the expected position.
- The efficiency € is the fraction of tracks with µ ≥ 1.
- The efficiency errors are calculated using the binomial errors ($\sigma_{\varepsilon} = \frac{\varepsilon(1-\varepsilon)}{N}$)

Efficiency & Multiplicity stability with muons energy

- Muons from the Pions runs.
- The µ and ɛ stable over the energy scan.

▲ロト ▲御 ト ▲ 陸 ト ▲ 陸 ト

Multiplicity maps/ASIC's

ASIC efficiency measurement for each plate.

▲ロト ▲御 ト ▲ 陸 ト ▲ 陸 ト

Efficiency maps/ASIC's

• Example of ASIC's efficiency & Multiplicity maps for few layers.

20/03/2013

10/15

Systematic

• The efficiency & multiplicity distribution per ASIC's.

• the inhomogeneity correction factor $c_i = 1/(\mu_i \mathcal{E}_i)$ is determined for each ASIC.

Yacine Haddad (LLR)

Angular dependencies

 The multiplicity increases with angle. At large angles, the particle path is longer and more ionisation and hence charge is expected. This rather in higher efficiency.

20/03/2013

11/15

Charge threshold scan

- Threshold scan for efficiency and multiplicity.
- for each run, the value of the threshold 1, 2 and 3 are changed in the same time for different chamber (3 chambers each).

Threshold	chamber no
t1	6, 18, 30
t2	10, 22, 34
t2	14, 26, 38

Q_{the} = 2.39 pC

- the color correspond the scanned threshold.
- DAC vs Q is not linear at the end of 1st and 2nd threshold.

Q_{thr} = 0.38 pC

FIGURE: Distribution of the multiplicity on function of position of reconstructed on the pad.

|--|--|

Q_{thr} = 0.14 pC

Charge threshold scan

The polya function can be write simply :

$$P(q;\theta,\overline{q}) = \left(q\frac{(1+\theta)}{\overline{q}}\right)^{\theta} \exp\left\{-q\frac{(1+\theta)}{\overline{q}}\right\} \quad (1)$$

 \overline{q} : mean charge.

- θ : free parameter related to the width of $P(q; \theta, \overline{q})$.
- The efficiency measurement by increasing the threshold means that your integrating the polya function as (polya-CDF function),

$$\varepsilon(q_{thr}) = \varepsilon_0 - c \int_0^{Q_{thr}} \rho(q; \theta, \bar{q}) dq$$
 (2)

 \mathcal{E}_{0} is the detector efficiency when the threshold on 0 pC and c is the normal

Yacine Haddad (LLR)

20/03/2013 13 / 15

Charge Shape measurement

FIGURE: left : fit, middle : data ,right : fitted shape

• The scan cross the pad for multiplicity provide the induced charge space distribution. 2D-fit of this distribution are applied using the following function,

$$f(x,y;\boldsymbol{\mu}_0,\boldsymbol{\alpha}_0,\boldsymbol{\alpha}_1,\boldsymbol{\sigma}_0,\boldsymbol{\sigma}_1) = \boldsymbol{\mu}_0 + \boldsymbol{\alpha}_0 g(x,y;\boldsymbol{\sigma}_0) + \boldsymbol{\alpha}_1 g(x,y;\boldsymbol{\sigma}_1)$$
(3)

where g(x, σ_i) is defined as,

$$g(x,y;\sigma_i) = \exp\left(\frac{(x-x_c)^2}{\sigma_i^2}\right) + \exp\left(\frac{(y-y_c)^2}{\sigma_i^2}\right)$$
(4)

▲ロト ▲御 ト ▲ 陸 ト ▲ 陸 ト

σ_i is an approximation of the e⁻ avalanche size.

Yacine Haddad (LLR)

Conclusion & perspectives

- Preliminary results on muons response were shown.
- the local response of the detector (by ASIC's) and the calibration factor were determined.
- The (\mathcal{E}, μ) are stable over the energy scan.
- The Polya distribution parameters were extracted from the threshold scan ⇒ digitizer input.

Next steps;

- Apply the correction by ASIC's to reduce the detectors inhomogeneity response.
- Check the stability of the performance over the time.
- Tune The digitizer with polya function and charge induced shape parameters.