THGEM for DHCAL

<u>S. Bressler</u>¹, L. Arazi¹, L. Moleri¹, A. Rubin¹, M. Pitt¹, A. Breskin¹, C. D. A. Azevedo², J. F. C. A. Veloso², H. Natal da Luz³, J. M. F. dos Santos³, E. Oliveri⁴

& THGEM / MICROROC

With M. Chefdeville⁵,

C. Adloff, A. Dalmaz, C. Drancourt, R. Gaglione, N. Geffroy, J. Jacquemier, Y. Karyotakis, I. Koletsou, F. Peltier, J.Samarati, G. Vouters, C. Adloff, J-J. Blaising, M. Chefdeville, A. Dalmaz, C. Drancourt

¹ Weizmann Institute of Science, Israel
² Aveiro University, Portugal
³ Coimbra University, Portugal
⁴ CERN, Geneva
⁵ LAPP, Annecy

Outline

- Introduction
- THGEM structures
- Laboratory R&D
- Beam test evaluation
- THGEM / MICROROC
- Summary
- Future plans

Introduction

- THick GEM (THGEM) is a 10 folded expanded GEM
 - Typical parameters: a ~ 1 mm, d ~ 0.5 mm, h ~ 0.1 mm
- Main advantages
 - Simple
 - Economic
 - Robust
 - It can be industrially produced over large area using standard PCB technologies

- No need to stretch (no dead area due to complicated mechanics)
- Growing interest and experience with large scale detectors
 - COMPASS-RICH upgrade
 - ALICE-RICH upgrade

• A Potential candidate sampling element for the DHCAL

• Arazi et al. 2012_JINST_7_C05011 http://dx.doi.org/10.1088/1748-0221/7/05/C05011

Shikma Bressler, Weizmann Institute of Science

THGEM structures - Standard & WELL THGEM

Standard THGEM

- Cu coated in both sides
- Operated with induction gap

WELL THGEM

- Cu coated in one sides
- No induction gap electrode attached to the anode

Standard THGEM - thin induction gap

- Allow multiplying in the induction gap
- Smaller avalanche in the hole
- Higher effective Raether limit

THGEM structures - Standard & WELL THGEM

Standard THGEM

- Faster signal raise time
- Better gas circulation

<u>WELL THGEM</u>

- Much thinner detector
- Higher gain at the same voltage
- Incase of a discharge all the energy is forced to the readout

THGEM structures - **SRWELL**

- <u>Segmented</u> <u>Resistive</u> <u>WELL</u>:
 - WELL THGEM coupled to a resistive layer (RL)
 - The charge is induced on the readout pads
 - The pads are separated from the RL by a thin insulating sheet
 - The RL quench the energy of occasional discharge
 - Cross talk due to charge propagation along the resistive layer is avoided by adding a Cu grid to the resistive layer
 - The electrode is **segmented** accordingly to prevent discharges in holes residing directly above grid lines

6

THGEM structures - Double-stage

- Multi-stage configurations are commonly used
- Advantages
 - More stable
 - Higher maximal achievable gain
- Disadvantages
 - Results in a thicker configuration
 - More expensive

- SRWELL-based double-stage configurations
 - Stable
 - Thin; ≤ 6 mm including drift gap
 - Will be studied systematically in the lab in the near future

Laboratory R&D - Structure characterization

- Comparative R&D to select optimal structure and operation mode
 - Different geometries (hole diameter, pitch, rim, thickness)
 - Different gas mixtures: Ne mixtures → low voltages
 - Single-stage and multi-stage
 - Gain stability
 - Gain Vs. rate / efficiency Vs. rate
 - Different segmentations
 - Different resistivities
 - Different HV configurations
 - Discharge probability
- Single unit characterization protocol to ensure reproducible results is foreseen

Laboratory R&D - Manufacturing procedure

- Different producers
 - Print Electronics (IL), Eltos (IT), CERN
- Long R&D program together with Print Electronics
- First batches: frequent defects of different kinds

- Last batches (improving the de-smearing stage and further baking):
 - Defects are rare
 - The Paschen breakdown voltages are reached

• New manufacturing procedures will be tested

Shikma Bressler, Weizmann Institute of Science

Laboratory R&D - Response to HIPs

- Mimic Highly Ionizing Particles in the lab lacksquare
- Measure the discharge probability as a function of the number of lacksquareprimary electrons
- The injector method: lacksquare
 - Use additional multiplication stage far from the detector
 - Multiply the electron from the x-ray conversion prior to the detector
 - Characterized the injector ulletgain precisely

Laboratory R&D - Response to HIPs

- At 5 mm gap, the injector is completely decoupled from the detector
- A typical spectrum has two peaks:
 - X-ray converted before the injector (multiplied in the injector and in the detector)
 - X-ray converted between the injector and the detector (multiplied only in the detector)
- The mean gain of the injector is measured from the ratio between the two peaks
- The width of the number of primary electrons is estimated from a simulation

Spectra measured with two different injector gains The detector gain is not affected by the injector gain

Laboratory R&D - Response to HIPs

- The dynamic range of the detector is studied in conditions more similar to those in the experiment
 - Fixed gain (here ~ 5000)
 - Different ionization • conditions
- Detectors with larger rims appear more stable
- Multiplication in the induction gap results in more stable configuration

Ξ

4000

average number of PEs

-

5000

6000

7000

6.0E-05

4.0E-05

2.0E-05

0.0E+00

-2.0E-05

÷.,

1000

Beam test evaluation - The setup

- 100x100 mm² THGEM detectors placed along the beam; 80x80 mm² coverage
- RD51 telescope
 - Three scintillators for triggering; 100x100 mm² coverage
 - Three MM for accurate tracking; 60x60 mm² coverage
- Single SRS front and card for the tracker and the detector
- All the measurements are wrt the MM track trajectory

Beam test evaluation - The configurations

- Five configurations were tested
 - Not all of them to the same level of details

Conf.	Thickness [mm]	Transfer [mm]	Drift [mm]	Total [mm]	Resistivity
Single1	0.4	-	5.5	5.9	10 MΩ/□
Single2	0.8	-	5	5.8	10 MΩ/□
Double1	0.4/0.4	1.5	4	6.3	20 MΩ/□
Double2	0.4/0.4	1.5	3	5.3	20 MΩ/□
Double3	0.4/0.4	1.5	2.5	4.8	10 MΩ/□

14

Mesh

Beam test evaluation - Performance in muon beam

• High efficiency and low pad multiplicity were recorded with all the configurations

- Plenty of room for optimization
 - HV configuration
 - Gaps

Shikma Bressler, Weizmann Institute of Science

Beam test evaluation - Performance in muon beam

- Take advantage of the accurate tracking system
- Measure efficiency and multiplicity as a function of the distance from the edge of the pads
- As expected small efficiency drop and higher multiplicity close to the edge of the pads

• The pad-multiplicity provides additional information concerning the track position, which could be exploited

Shikma Bressler, Weizmann Institute of Science

Beam test evaluation - Performance in pion beam

- Single-stage detector:
 - Significant gain drop was recorded in the transition from low rate muon beam to high rate pion beam
 - Under study

Beam test evaluation - Performance in pion beam

- Double-stage detector:
 - Stable and similar operation was recorded both in muon and pion beam
 - No gain drops where recorded
 - With respect to SRWELL each element has lower HV for the same gain

Beam test evaluation - Discharge analysis

- Two types of discharges
 - *Large*: 50-200 V drop
 - *Micro*: 5-10 V drops
- Single-stage
 - Large discharge
 - Probability: 10⁻⁷ muons, 10⁻⁶ pions
 - Long recovery time of the power supply
 - In some case, the SRS readout electronics had to be reconfigured
 - Micro discharges
 - Probability: 10⁻⁶ muons, 10⁻⁵ pions
 - No obvious correlation between the micro-discharges and the gain drop
 - Study is on-going

Beam test evaluation - Discharge analysis

- Double stage:
 - No large discharges
 - Micro discharges
 - Probability: 10⁻⁷ muons, 10⁻⁶ pions
 - Mostly correlated with the beam spills
 - Not all the electrodes are involved
 - No effect on the gain and the efficiency

THGEM / MICROROC

- Based on work of many LAPP & Omega people
- Successful preliminary tests of several THGEM-based detectors coupled to the MICROROC chip
 - Standard, WELL, SRWELL
- 100 x 100 mm² THGEM electrodes were mounted inside LAPP's 320x480 mm² chamber

WELL & SRWELL attached to the MICROROC anode

Shikma Bressler, Weizmann Institute of Science

THGEM / MICROROC - Preliminary results

• Standard THGEM: performance similar to MM

• WELL THGEM:

- The THGEM was operated in 150 GeV pion shower behind a 2λ Fe block in a very stable way
- THGEM chamber could be included in the DAQ of the 4 1x1 m² during the RD51 test beam

Shikma Bressler, Weizmann Institute of Science

Summary

- THGEM provides with a viable solution for many experiments that require large area coverage, in particular future DHCALs
 - Fully industrialized
 - Robust
 - Cheap
- Growing experience and knowledge is achieved in extensive R&D program
- Positive preliminary results in beam tests
- Positive preliminary results when coupled to the MICROROC chip

Future plans - Towards 1 m² prototype

- Start with 300x300 mm² detector
 - Chamber, electrodes and a corresponding SRS anode should be ready soon
 - Solve technical difficulties
 - Maintain constant gaps and fields
 - Optimize segmentation to reduce the capacitance
 - •
 - Repeat characterizations studies
 - Gain stability
 - Gain Vs. rate
 - Response to HIPs
 - ...
 - Consider resuming to the use of Argon based mixtures
 - More primaries
 - Studies in Israel and Portugal in parallel
 - Test beams are foreseen (PSI / CERN / ?)

Future plans - Towards 1 m² prototype

- Continue collaborating with the group from LAPP
 - Produce a 320x480 mm² segmented electrode to match LAPP's chamber
 - Study grounding issues seen with the resistive layer
 - Use 100x100 mm² MICROROC anode in WIS

Future plans - CALICE ?