Understanding of SKIROC performance

T. Frisson (LAL) On behalf of the SiW ECAL team

Special thanks to the electronic and DAQ experts: Stéphane Callier, Rémi Cornat and Frédéric Magniette And to: Romain De Abreu (Internship student)

The road to the technological prototype

Intermediate step:

First test in beam Benchmark to go further

- U structure (single detection layer per slab)
- Si wafer:
 - $9x9 \text{ cm}^2$ Thickness = 320 μm
 - **pixel size: 5x5 mm**² :lateral granularity = 4 x better than physics prototype
- 4 SKIROCs per slab (1/4 final design) - 4 x 64 channels = 256 channels/slab

DESY : e- (1 - 5 GeV)

- Spring 2012 : 1 layer
- Summer 2012 : 6 layers
- Winter 2013 : 10 layers (see Vladik and Yuji talks)

Front end electronics: SKIROC

SKIROC (Silicon Kalorimeter Integrated Read Out Chip)

- SiGe 0.35µm AMS
- 7.5 mm x 8.7 mm
- High integration level (variable gain charge amp, 12-bit ADC, digital logic)
- 64 channels
- Large dynamic range (~2500 MIPS), low noise (0.4 fC 10 pC)
- Auto-trigger at 1/2 MIP
- Low Power: (25µW/ch) power pulsing

Trigger threshold

uADC

Trigger delay

Calibration of SKIROC

Establishment of calibration procedure for a large number of cells

Trigger threshold

- depends on the gain

- Individual channel threshold adjustment

Range too small \rightarrow R to increase current in the 4-bits DAC adjustment

OK on test bench \rightarrow to be tested in beam (need new calibration procedure)

Trigger delay uADC Trigger delay Trigger threshold Slow shaper signal

BCID+1 effect

Retriggering of the ASIC without hit

- Understood (see Nathalie and Stéphane talks)
- ~13% of the events (for $T_{slowclock} = 2.5$ MHz):
 - → Calculated: T_{slowclock}/T_{nor64}
 - Measured with test bench and test beam
- Easy to cut off-line

Conversion: BCID with one hit, SCA0 ch5: holded value= peak of the signal, other SCA0= holded value=pedestal, other SCAi= ped BCID+1: No conversion because OR64 level=0 during this BCID+1

Plane events

PA is referenced to the analog power supply level Instabilities of power supply level \rightarrow fake events

- VDD_delay/sca plugged on analog power supply → increase instabilities of power supply level
- Analog power supply common to the 4 ASIC
- Self-sustained \rightarrow sometimes filled all the 15 ASIC memories
- Highly dependant of the number of ASIC with hits, dependant of the number of triggered channels

Plane events

Proposed patchs

• Bigger capacitance close to the ASIC to stabilize power supply

 2 power supply lines: Modify VDD_delay/sca routing to protect PA power supply (pin-clipping)

First tests on test bench:

- Injection in the 4 ASICs
- Reduction of the plane events: $\sim 80\% \rightarrow \sim 10\%$ (both capa and pin-clipping)

 \rightarrow see Vladik and Yuji talks

- 2 slabs modified to be tested during the last test beam
 - 1 slab with big capa
 - 1 slab with pin-clipping

PCB

PCB is critical \rightarrow Goal :1 mm thick, 8 layers, 1% flatness, ASICs bounded into

FEV COB

- Available since december 2012 (Boards from Exception and Protecno)
- First board for 16 ASICs (btw. Several proposal to assure planarity exist)
- Now equipped with 8 SKIROC ASICs (Boncing by CERN) \rightarrow Needs testing
- However, bonding was not straightfoward, thin bonding pads can be improved

Flèche de 2.2mm

PCB

Line density in PCB \rightarrow routing is crucial

- Noise
- Cross talk (Digital / readout channels → readout channels)

Ê	18	3	5		6		4		2		1		61		63	59	64
Y (Pixel positio		7	11	13	12	14	16										
	16	9	19	21	24	26	28	30	22	20	10	8	60	58	56	52	42
		15	25	31	34	36	38	40	42	44	32	18	62	54	51		
	14	17	33	39	45	47	49	46	53	55	48	57	55	53	48	43	38
		23	37	51	52	54	56	58	50	50	49	46	47	41	40		
	12	27	41	57	60	62	45	37	36	35	34	33	32	31	30	29	28
		29	35	43	61	64	27	26	44	39	24	21	20	19	18		
	10	13	15	9	59	63	16	23	22	25	17	13	12	11	10	9	8
		23	19	7	5	1	3	14	6	15	7	2	1	5	3		
	8	25	21	11	4	6	2	10	58	63	61	59	64	62	60	56	57
		29	27	17	16	12	8	14	49	50	51	52	53	54	55		
	6	35	33	31	28	24	26	18	40	41	42	43	44	45	48	47	46
		41	39	37	36	32	30	20	33	34	35	36	37	39	38		
	4	43	45	40	42	38	34	22	24	25	26	29	28	31	32	30	27
		47	49	52	54	46	44	4	17	18	19	20	21	23	22		
	2	53	51	56	60	62	64	48	11	12	13	14	15	16	2	6	4
		57	55	58	59	63	61	50	3	8	10	9	1	7	5		
			2		4		6		8		10		12		14	16	18
													Х	(F	Pixe	el pos	ition)

Switched off channels

Noisy channels + no individual channel adjustement → channels linked to several pixels

Cross talk with digital lines (valEvt, startAcq, clocks, injection line): e.g.: ValEvt line close to M4 35-37: signal > 1 MIP Sigma of the noise BCID distribution in channel 35 (M4) Y (pad position) n. of events Test bench data 4.5 3.5 2.5 BCID (DAC) X (pad position) Synchronized with valEvt signal (13 BCID)

Noise studies

Noise \propto Line length

Already improved for the 16 ASIC version of the PCB

Coherent noise (general behavior)

Development of algorithm to identify coherent noise (continuation of Roman studies)

e.g. : chip M1

We extract incoherent noise + 2 sources of coherent noise:

• To be clearly identified and reduced (if possible): under discussion with experts (Omega)

Correlation studies

Chip M2 (all layers):

- Another coherent noise source —> 2 highly correlated channels
- No clear idea of the source

We don't see an effect on MIP distribution

Correlation studies

Chip M1 (only in slab3) :

- Another coherent noise source 2 highly anti-correlated channels
- No clear idea of the source of this behavior

Correlations (with cut) Chip_M1 ch33 ch34

We don't see an effect on MIP distribution. We should check the S/N ration @ low gain

SKIROC results as a function of the gain

Saturation of the MIP position \rightarrow bad holdscan calibration?

Fit of the noise as a function of the gain

Constant parameter of the linear fit for all channels / ASICs / Slabs

Event display

2 e- (3 GeV, no tungsten)

3 e- (3 GeV, no tungsten)

1 cosmic + 1 e-(3 GeV, no tungsten)

1 e- (5 GeV) 5 W plates_between layers

Summary

2012 test beams have provided useful data. Mainly thanks to the Frédéric's work on DAQ software

Major step forward in the understanding of the detector BCID+1 Plane events Switched off channels due to crosstalk with digital line or readout channels Noise structure

To be continued with power pulsing studies See Nathalie, Vladik and Yuji talks

R&D in progress... first test beam shows promising results