

TDC calibration of a Spiroc2b driven detector (the AHCAL layer)

Overview

- Introduction
- Trigger setup
- Spiroc2b TDC calibration
 - · Ramp calibration
 - · Offset calibration
- Outlook

Radial Hit Time Dependency

Universität Hamburg

Trigger T(0) Setup

- Time information has no correlation to incoming particles
- need to provide event by event T0 measurement
- Validate event signal from triggers in front of DHCAL provides T0 time signal (digital, fixed amplitude)

Spiroc2b - TDC

Time measurement:

- Hit \rightarrow sampled voltage ramp
- Ramp produced by chip
- Analogue ADC samples voltage
- TDC is analogue measurement \rightarrow needs calibration
- Absolute time:
- \rightarrow clock cycle and TDC

Spiroc2b TDC:

- 16 analogue memory cells per channel
- 4096 TDC bins (4 μ s \rightarrow 1ns)
- Same 12bit ADC is used for energy and time measurement
 - \rightarrow similar effects expected for calibration of ADC and TDC

voltage

TDC ramp calibration

UH n r Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Every Spiroc2b produces 2 TDC ramp(s):

- Two multiplexed ramps
- Ramps are identified via clock cycle
- Ramps are not identical \rightarrow different calibration
- AHCAL layer: **32** ramps (16 chips)
- Ramp calibration with charge injection on one channel

Assumptions:

single ramp

ramp 1

ramp 2

combined

TDC corrections assumptions

UH Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

one channel, one ramp, one memcell

Lab measurements:

- TDC dyn. range not fully used \rightarrow 4µs in 2500bins: **1.6ns** p. TDC bin
- Ramps are not linear
 - $\rightarrow f_{chip, ramp}(TDC)$ must be defined for every chip (look up table)

Channel with 16 memory cells:

- Every memory cell has an offset
- Each memcell shows different TDC dependency
- **Offset**: mean of distribution per memcell after ramp correction
- \rightarrow caution if data is not evenly distributed over whole TDC range

TDC>-TDC(linfit) | 4500 5500 4000 5000 6000 Delay [ns] ← cell 4 20 ime>-TDC(look up) [ns] cell 6 10 5000 4000 6000 Delay [ns] $time[ns] = f_{chip,ramp}(TDC) + offset_{memory,cell,channel}(+clock cycle)$

almost no function of TDC

linear fit residual

Assumptions:

cell 1

cell 8

TDC corrections

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Residual distribution for **one** channel after corrections for:

- Two different ramps
- Memory cell wise offset
- \rightarrow single channel electronics resolution: ~2ns

 \rightarrow Charge injection not practicable for all 576 channels

Solution to get the offsets:

Electron test beam:

- High rate (kHz)
- Instantaneous EM showers (AI target: 3.7 X₀)
- Few different beam positions to cover all chips
- \rightarrow determine memory cell wise offset for All 576 channels and 16 memcells
 - \rightarrow 9216 offsets

EM shower in AHCAL layer (one run)

TDC calibration DESY test beam

Universität Hamburg

Outlook

AHCAL layer (and future prototypes)

 Detailed investigation of hadronic showers and simulations in 4D

TDC calibration of the AHCAL layer:

- Need chip wise (2) ramp correction and memory cell and channel wise offsets corrections
- Electron test beam for calibration
- Promising results for charge injection
 → electronics resolution ~2ns
- Procedure is not final
 → more effects to be taken into account

