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Outline

e Shower Profiles as a Function of Time

* Beyond the Time of First Hit

e Proton / Pion differences
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Adding a 4th Dimension: Depth

* Event-by-event measurement of the
depth of T3B relative to the shower
start

» By combining large data samples, the
average time structure of hadronic
showers can be measured over a
depth of 5 A

depth of T3B in shower

» 4D shower images with unprecedented granularity
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Shower @ -8 to -6 ns CALICE T3B Data
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Shower @ -6 to -4 ns
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Visually the most spectacular Result: The Movie

Shower @ 2 to 4 ns CALICE T3B Data
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Visually the most spectacular Result: The Movie

Shower @ 6 to 8 ns CALICE T3B Data
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Vlsually the most spectacular Result The Mowe
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Shower @ 30 to 40 ns
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Shower @ 60 to 80 ns
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Vlsually the most spectacular Result The Mowe
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 T3B samples the tail of the shower (early shower start) more often than the
front of the shower (late shower start): Has to be corrected when
reconstructing longitudinal profiles by weighting reconstructed energy
according to number events with a given shower start

* For Calorimeter profiles: Additional weighting with the shower start distribution:
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Precision of Profiles

 Shower start reconstruction is not exact, in particular in the WHCAL data:
Results in a smearing of the profiles
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Calorimeter Profile 7* 60 GeV:
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* Uncertainty of 2 layers, combined with a steeply falling shower start
distribution results in a lowering and a backward shift of the peak
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Longitudinal Profiles in Time

Energy Deposition [MIP] / 0.129 4,

4
Shower Depth [A ]

fast component has a peak

Shower Profile

60 GeV data
Radius [cm]: -1.510 41.8

w— ) 0ONnsto 24 ns

— 2 4 nsto 16.0nNns

—  16.0 ns to 250.0 ns

after 5 - 10 Xo: EM fraction late components peak slower:
dominated by hadrons

* late components suppressed by one / two orders of magnitude
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The Calorimeter Profile

Calorimeter Profile
60 GeV data
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Adding Radial Information

B e

Calorimeter Profile
60 GeV dala
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Adding Radial Information
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Adding Radial Information
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Calorimeter Profile

~ 60 GeV data
Radius [cm]: 20.210 41.8

w— 00nNnsto 24ns

—— 240510 16.0NS

— 16.0nsl0 250.0 ns
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* The central part (dominated by EM - particles) drives the difference in shape -

In the outer regions of the calorimeter the shower looks the same at all times...
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Shower Integratlon Tlme

* From the time-dependent shower profile the integration time required to reach

a certain energy fraction can be determined (100% here defined as the energy
after 200 ns)

» Some corrections due to the use of the time of first hit - Studied with MC
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Shower Integratlon Tlme
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* Very good agreement with QGSP_BERT_HP - 98% after 10 ns (would be
reached after 20 ns without the Time of first Hit definition)

0.9

 The data show that very long integration times are not required, even for tungsten
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Back to 3D: The Ti

me of Hit

* The goal: Use the time of each photon due to real energy depositions in the

analysis, give up “first hit”

definition

* The challenge: Photon sensor afterpulsing - Can only be corrected for statistically,
iImpossible to distinguish event by event - This is photon-sensor specific!
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* |ndication for a slow signal component beyond that expected from the scintillator and
the reconstruction - Scintillaton of reflective foil, potential imperfections of AP

correction (on the sub-% level!)

T3B Update
CALICE Collaboration Meeting, March 2013

Frank Simon (fsimon@mpp.mpg.de)




L} Ll L} L\l I Ll

TTTTTTTT Radius from-1.5ecmto 17 em: ] T ST Radius from 17.1 ecm to 38.7 cm: -
—+— Hadrons @ 60 GeV - Steel —+— Hadrons @ 60 GeV - Steel  Differences

~—»— Hadrons @ 60 GeV - Tungsten ~»— Hadrons @ 60 GeV - Tungsten
Muons @ 180 GeV —=— Muons @ 180 GeV between

Ll
iy

L1l

absorbers
most
pronounced
- at large

100
L o radius

-
‘C
L1 11

-

crann LB lllr"“n lllllll1

L oobnd s sinal
r11nn1 TTTIT

b

- Radius from-1.5cmto 17 cm: - S Radius from 17.1 cm to 38.7 cm: -
Hadrons @ 60 GeV - Steel Hadrons @ 60 GeV - Steel

Hadrons @ 60 GeV - Tungsten _| i . — Hadrons @ 60 GeV - Tungsten _
Muons @ 180 GeV — : Muons @ 180 GeV =

1 l |
15
Time [ns]

T3B Update
CALICE Collaboration Meeting, March 2013

Frank Simon (fsimon@mpp.mpg.de)




Time of Hit - Radial D

with Afterpulsing Correction

™ T T T T T T T T T T |

- Hadron Data @ 60 GeV:
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o

30 40
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* Good agreement with behavior observed for Time of First Hit - No substantial
benefit for shower understanding
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The Effect of Afterpulsing

B e

Hadrons @ 60 GeV - Tungsten - with AP Corr. Hadrons @ 60 GeV - Tungsten - w/o AP Corr.
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* Fraction of total energy ( = 200 ns integration time) in T3B (not weighted to full
calorimeter)

> Without reduction of afterpulses, there is no point to integrate longer than ~ 20
ns, after that, almost all is afterpulsing (with the T3B MPPCs)
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* As expected tungsten somewhat slower than steel (but overall very small
difference), most pronounced at large radius
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e For correlated events with the WAHCAL, the Cherenkov information is
available: Provides particle ID
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Mean time of first Hit [ns]

Shower Radius [cm]

 Compare protons and pions: No significant difference in timing profile seen
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Conclusions

* The current T3B analysis campaign is nearing completion with the competion
of the theses of Christian and Lars

New results this time:

e Longitudinal profiles split in time - Profiles at early times are characterized by a
quick rise due to EM component, at later times they exhibit the slower rise
expected from purely hadronic reactions

Even in tungsten the overall signal integration can be quite quick: 98% of all energy
is seen within 10 - 20 ns (depending on method of reconstruction)

We can also look at the time of each photon - requires statistical subtraction of
afterpulses: Results are consistent with the already public time of first hit results

With the current photo-sensor (MPPC50) there is no point in integrating for more
than 20 ns, after that almost everything is afterpulsing

Differences in the radial timing profile between proton and pion showers are
negligible
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Explonng Hadronlo Showers

i‘ instantaneous component: charged hadrons

| detected via energy loss of charged hadrons
in active medium

it R delayed component: photons neutrons protons from
.j,! nuclear de-excitation following neutron capture,

| momentum transfer to protons in hydrogenous active
i medium from slow neutrons

* The time structure in granular calorimeters is highly relevant
* influence on shower separation with PFAs depending on shower timing capability
e impact on background rejection at CLIC: 0.5 ns between bunch crossings

e particularly interesting in tungsten: heavy nucleus, so far little data
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Shower Physics - Expectations

e Sensitivity to a wide range of particles within
hadronic shower

 RPCs blind to n elastic ->
Interesting cross-check !

#QD [re/.)

72 EM
ZZ HRD (rl)

Late components predominantly related to
neutrons, in particular n-capture

Expect wide spatial distribution: Shower halo
most sensitive to time structure, core dominated
by prompt relativistic particles
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* 15 cells behind the WAHCAL / SDHCAL

e Directly coupled MPPC-50P

e Bicron BC420 scintillator (391 nm
peak emission, pulse FWHM 1.3 ns,

0.5 ns rise time)

 Wrapped in 3M reflective foll
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e SiPM mounted to high band-width
preamplifier (x8.9 amplification)

* Each channel read out with PicoScope PS6403
e 1.25 GS/s

e 2.4 ys acquisition window

* max. trigger rate > 100 kHz
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Data Reconstruction

e e =

e Full waveform recorded for
each channel

* Individual photon arrival

times (and total amplitude) CALICE T3B 10 GeV ~ waveform

I original signal

reconstructed waveform
B identified photon signals
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subtracting 1 p.e. signals
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Calibration - Average

Amplitude [V]
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e Reference waveform

determined by fit,
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extrapolation to avoid
artifacts from end of

acquisition window
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0.003

1 p.e. signal

* Dark noise recorded between spills

* Every few minutes a reference 1 p.e. signal
for each channel is built from data

» Automatic gain correction!
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|

7 " 7 | Waveform Correction
Original Waveform

Waveform corrected with Fit

0.002
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Time over ]
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Calibration - Energy

—_—
e =

 Calibration of the time energy scale in the lab with a ®°Sr source

« Additional correction factor to MIP scale: 0.82 (deposited 805 keV for MIPs
compared to ~1 MeV for ?9Sr electrons
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* MIP amplitude in p.e. depends strongly on integration time: Afterpulses of
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the photon sensor!

T3B Update

Frank Si fsi . .d
CALICE Collaboration Meeting, March 2013 rank Simon (fsimon@mpp.mpg.de)




Calibration - Energy

* Temperature matters: Direct effect on the gain (since we keep the operating
voltage constant)

* But beware: Afterpulses also change with temperature and voltage!

» Temperature correction is integration-time dependent!

~ 40
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Calibration - Time

* T3B is not capable of measuring absolute time: No careful study of signal
running times from trigger system to T3B

e Triggers taken from CALICE DAQ backplane with WAHCAL, directly from
scintillator coincidence with SDHCAL

* But: Took great care that all oscilloscopes trigger at the same time: uniform
cable lengths to Picoscope external trigger, uniform cable lengths for T3B tiles
(onthe 1 -2cm (50 - 100 ps) level)

» To measure time relative to primary particle impact, a measurement of the
latency of the whole system is required

» Since channel-to-channel timing is fixed, this can be done with a single cell

‘ U GO 138 Update Frank Simon (fsimon@mpp.mpg.de)
: < . de
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A P TR T S T
174 176 178 180 182
Time of first Hit [ns]

* Fix the global timing: Penetrating particles in the central tile of T3B

 Done on time of first hit distribution: The main peak corresponds to
instantaneous (relativistic) particles - Peak determined with a Gaussian,
set to t = 0 in analysis
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Simulations

Geant4
Event Generation

Simulated Muon Events

N E in keV

Maximal Time Window)

[Energy to MIP Conversion] [(M'P to p.e. Conversion ]

- 1 Energy Rescaling l
805.5 keV / MIP 24 p.e. /| MIP

3 .YL!LL" = .16{(.‘. o w0 > 30 C ] &0 B i
Energy [keV] J Energy Deposition [p.e.]

40 0 &0 70

* All detector effects SiPM & Scintillator

have to be Poissonian Energy ( Fluctuations in
Smearing Photon Collection

implemented in the MC
dlgltlzathn Muon Data

* Photon timing taken
from muon data
(instantaneous energy
deposition)

Photon Time Fit Function
Distribution as Template

PP | PP | A
150 200 %0

Time of 1pe Hits [ns]
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The Making Of: The Movie

— = = =

e Correlate T3B and WAHCAL events:
Event-wise shower start information

* Split data set (identified first hits) into
3D - histogram:

= == — = e —— —

* radial position: T3B cell id

* |longitudinal depth in shower:
distance of shower start and T3B

(the number of events in the shower
start bins is used as normalization
basis: gets longitudinal profile right!)

e time: measured time of first hit,
corrected for speed of light
propagation from shower start to
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t = 0: Shower
reaches T3B

U

T3B Update
CALICE Collaboration Meeting, March 2013

Frank Simon (fsimon@mpp.mpg.de)




