# T3B Update

Frank Simon

Max-Planck-Institut für Physik

Munich, Germany

CALICE Collaboration Meeting Hamburg, Germany, March 2013







### **Outline**

• Shower Profiles as a Function of Time

Beyond the Time of First Hit

• Proton / Pion differences

### Adding a 4th Dimension: Depth

Correlation of T3B and WAHCAL events provides a powerful addition:



- Event-by-event measurement of the depth of T3B relative to the shower start
- By combining large data samples, the average time structure of hadronic showers can be measured over a depth of 5 λ<sub>I</sub>

▶ 4D shower images with unprecedented granularity



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



T = 0: Activity
maximum in layer
39
(rear of calorimeter)



### Reconstructing Longitudinal Profiles

- T3B samples the tail of the shower (early shower start) more often than the front of the shower (late shower start): Has to be corrected when reconstructing longitudinal profiles by weighting reconstructed energy according to number events with a given shower start
- For Calorimeter profiles: Additional weighting with the shower start distribution:







### **Precision of Profiles**

Shower start reconstruction is not exact, in particular in the WHCAL data:
 Results in a smearing of the profiles



Currently, no corrections for this effect are made

It is also implemented in the simulations

 Uncertainty of 2 layers, combined with a steeply falling shower start distribution results in a lowering and a backward shift of the peak



### **Longitudinal Profiles in Time**



late components suppressed by one / two orders of magnitude



### The Calorimeter Profile







## **Adding Radial Information**

• Calorimeter Profile - Normalized for shape comparison



## **Adding Radial Information**

• Calorimeter Profile - Normalized for shape comparison







### **Adding Radial Information**

Calorimeter Profile - Normalized for shape comparison



• The central part (dominated by EM - particles) drives the difference in shape - In the outer regions of the calorimeter the shower looks the same at all times...





### **Shower Integration Time**

- From the time-dependent shower profile the integration time required to reach a certain energy fraction can be determined (100% here defined as the energy after 200 ns)
- Some corrections due to the use of the time of first hit Studied with MC



Time of first Hit T3B data is faster than the full calorimeter - but not dramatically

Time of first Hit: Timing of the second photon is used for each hit (energy above threshold starting from the first photon)



### **Shower Integration Time**



- Very good agreement with QGSP\_BERT\_HP 98% after 10 ns (would be reached after 20 ns without the Time of first Hit definition)
  - The data show that very long integration times are not required, even for tungsten



#### Back to 3D: The Time of Hit

- The goal: Use the time of each photon due to real energy depositions in the analysis, give up "first hit" definition
  - The challenge: Photon sensor afterpulsing Can only be corrected for statistically, impossible to distinguish event by event - This is photon-sensor specific!



T3B: MPPC50

"old" series

 Indication for a slow signal component beyond that expected from the scintillator and the reconstruction - Scintillaton of reflective foil, potential imperfections of AP correction (on the sub-% level!)



#### The Time of Hit



Differences
 between
 absorbers
 most
 pronounced
 at large
 radius



### Time of Hit - Radial Dependence



 Good agreement with behavior observed for Time of First Hit - No substantial benefit for shower understanding

## The Effect of Afterpulsing



- Fraction of total energy ( = 200 ns integration time) in T3B (not weighted to full calorimeter)
- Without reduction of afterpulses, there is no point to integrate longer than ~ 20 ns, after that, almost all is afterpulsing (with the T3B MPPCs)



# Integration Time - Comparing Steel and Tungsten



 As expected tungsten somewhat slower than steel (but overall very small difference), most pronounced at large radius

#### **Protons & Pions**

For correlated events with the WAHCAL, the Cherenkov information is available: Provides particle ID



Compare protons and pions: No significant difference in timing profile seen



#### **Conclusions**

- The current T3B analysis campaign is nearing completion with the competion of the theses of Christian and Lars
- New results this time:
  - Longitudinal profiles split in time Profiles at early times are characterized by a
    quick rise due to EM component, at later times they exhibit the slower rise
    expected from purely hadronic reactions
  - Even in tungsten the overall signal integration can be quite quick: 98% of all energy is seen within 10 20 ns (depending on method of reconstruction)
  - We can also look at the time of each photon requires statistical subtraction of afterpulses: Results are consistent with the already public time of first hit results
  - With the current photo-sensor (MPPC50) there is no point in integrating for more than 20 ns, after that almost everything is afterpulsing
  - Differences in the radial timing profile between proton and pion showers are negligible



# **Backup**





### **Exploring Hadronic Showers**

Hadronic showers have a complex structure - also in time!



instantaneous, detected via energy loss of electrons and positrons in active medium

instantaneous component: charged hadrons detected via energy loss of charged hadrons in active medium

delayed component: photons, neutrons, protons from nuclear de-excitation following neutron capture, momentum transfer to protons in hydrogenous active medium from slow neutrons

- The time structure in granular calorimeters is highly relevant
  - influence on shower separation with PFAs depending on shower timing capability
  - impact on background rejection at CLIC: 0.5 ns between bunch crossings
  - particularly interesting in tungsten: heavy nucleus, so far little data



### **Shower Physics - Expectations**



- Sensitivity to a wide range of particles within hadronic shower
  - RPCs blind to n elastic -> interesting cross-check!



 Expect wide spatial distribution: Shower halo most sensitive to time structure, core dominated by prompt relativistic particles



EM

Neutions

### The T3B Setup



• 15 cells behind the WAHCAL / SDHCAL



- Directly coupled MPPC-50P
- Bicron BC420 scintillator (391 nm peak emission, pulse FWHM 1.3 ns, 0.5 ns rise time)
- Wrapped in 3M reflective foil



#### T3B Readout

 SiPM mounted to high band-width preamplifier (x8.9 amplification)





- Each channel read out with PicoScope PS6403
  - 1.25 GS/s
  - 2.4 µs acquisition window
  - max. trigger rate > 100 kHz

#### **Data Reconstruction**

- Full waveform recorded for each channel
- Individual photon arrival times (and total amplitude) determined by iteratively subtracting 1 p.e. signals







### Calibration - Average 1 p.e. signal



- Dark noise recorded between spills
- Every few minutes a reference 1 p.e. signal for each channel is built from data
- Automatic gain correction!

 Reference waveform determined by fit, including smooth extrapolation to avoid artifacts from end of acquisition window





### **Calibration - Energy**

- Calibration of the time energy scale in the lab with a <sup>90</sup>Sr source
  - Additional correction factor to MIP scale: 0.82 (deposited 805 keV for MIPs compared to ~1 MeV for <sup>90</sup>Sr electrons



 MIP amplitude in p.e. depends strongly on integration time: Afterpulses of the photon sensor!





### Calibration - Energy

- Temperature matters: Direct effect on the gain (since we keep the operating voltage constant)
- But beware: Afterpulses also change with temperature and voltage!
- ▶ Temperature correction is integration-time dependent!



For short integration times ( < recovery time of MPPC microcells):

Linear dependence of MIP on gain

For long integration times (>> recovery time of MPPC microcells):

Quadratic dependence of MIP on gain



#### **Calibration - Time**

- T3B is not capable of measuring absolute time: No careful study of signal running times from trigger system to T3B
  - Triggers taken from CALICE DAQ backplane with WAHCAL, directly from scintillator coincidence with SDHCAL
- But: Took great care that all oscilloscopes trigger at the same time: uniform cable lengths to Picoscope external trigger, uniform cable lengths for T3B tiles (on the 1 - 2 cm (50 - 100 ps) level)
- ▶ To measure time relative to primary particle impact, a measurement of the latency of the whole system is required
  - ▶ Since channel-to-channel timing is fixed, this can be done with a single cell

#### **Calibration - Time**



- Fix the global timing: Penetrating particles in the central tile of T3B
  - Done on time of first hit distribution: The main peak corresponds to instantaneous (relativistic) particles - Peak determined with a Gaussian, set to t = 0 in analysis





#### **Simulations**



### The Making Of: The Movie



- Correlate T3B and WAHCAL events:
   Event-wise shower start information
- Split data set (identified first hits) into
   3D histogram:
  - radial position: T3B cell id
  - longitudinal depth in shower:
     distance of shower start and T3B
     (the number of events in the shower
     start bins is used as normalization
     basis: gets longitudinal profile right!)
  - time: measured time of first hit, corrected for speed of light propagation from shower start to T3B

31

# The Making Of: The Movie



60 GeV pion