Status of SPS 2011 W-AHCAL data analysis

Angela Lucaci-Timoce

2011 data taking

- W-AHCAL: 38 layers, absorber: tungsten, active media: scintillator tiles read out by SiPMs (+ Tail Catcher and Muon Tracker, TCMT)
- CERN SPS: June, July and September 2011
- Beam: mix of pions, protons, kaons, muons and electrons
- Energies: from 10 to 300 GeV
- More details about data taking conditions and beam-line instrumentation:

> LCD-Note-2012-002

Status of the analysis

• This talk: analysis of data with $p_{beam} \leq 100 \text{ GeV}$ (for higher energies need to consider the TCMT, see talk by Eva Sicking)

Introduction

- Identification of electrons, pions, protons and kaons done with two Cherenkov counters
- Muons tagged using W-AHCAL high granularity and rejected
- Simulation: Mokka model TBCern2011WAHCAL

- GEANT4 physics lists: combined with the data driven Neutron **High Precision (HP)** models and cross-section
 - important for tungsten, which is a neutron-rich material

Analysis of e^+/e^- data

- Tungsten: dense material (about 3 X₀ per layer)
 → electromagnetic shower will form a cluster in the first calorimeter layers
- Selection:
 - one identified cluster
 - there should be no tracks

Analysis of e^+/e^- data

- Example: energy sum distributions for 20 GeV e^+/e^- (similar behaviour for all energies)
- e⁻ energy about 3% higher than for e⁺ (not understood, negative runs taken in July, positive ones in September 2011)

- Low energy tail (due to material in the beam-line?)
- Tail not present in the Monte Carlo

Scaling factor of the SiPM response curves

- SiPM response curves measured before mounting on the tiles
- Due to geometrical effects, maximum number of fired pixels in case of mounted SiPMs is about 80% of that for bare SiPM, with a large spread (from Fe-AHCAL em

paper, • arXiv:1012.4343

 Example of saturation curves with different scaling factors, for a given cell

Scaling factor of the SiPM response curves

- Electromagnetic showers in W-AHCAL more compact that in Fe-AHCAL \Rightarrow scaling factor expected to have a significant impact
- To estimate systematics due to scaling factor s: find the highest energetic cell and re-run the reconstruction with modified scaling factor for that cell: $s \pm 1$ RMS

Example: 40 GeV e⁺

• The highest energy cell contains more than 60% of the total energy in layer 2

• Impact of scaling factor on the average energy at 40 GeV: $\langle E \rangle = 1186^{+3\%}_{-2\%}$ MIPs

Analysis of e^+ data: MC comparison

• Novosibirsk fit (Gaussian with tail) in a region defined by $mean\pm1.5~\sigma$

- Simulation predicts about 3% lower response than observed
- Implementation of detector material in Mokka was checked
- But: significant systematics from the scaling factor of the SiPM response curves

Analysis of hadron data

Hadron analysis: variation of detector response with time

- Calorimeter response to protons is stable with time, but variations observed for π^+ and π^-
- For the analysed energies: π^- higher response than π^+

• Similar variations observed in the muon response:

 ⇒ Part of variations seem to be related to the calorimeter itself (not clear if due to charge, or just time dependence)

• Systematic uncertainties due to variation of detector response with time: π^{\pm} : $\pm 2.9\%$, protons: $\pm 0.7\%$

Angela Lucaci-Timoce

Analysis of π^-/π^+ data: $\langle \mathsf{E}_{\mathsf{vis}} \rangle$ vs $\mathsf{p}_{\mathsf{beam}}$

- Energy for π^- higher than for π^+ (variations of detector response in time of about 2.9%)
- \bullet Agreement between data and QGSP_BERT_HP/FTFP_BERT_HP for π^+

• $\pi^+:$ good agreement between data and <code>QGSP_BERT_HP/FTFP_BERT_HP</code> for all analysed energies

Analysis of π^+ data: longitudinal profile

• Large variations (depending on the layer number)

40

Analysis of π^+ data: z_{cog}

- *z_{cog}*: energy weighted centre-of-gravity
- Good agreement between data and QGSP_BERT_HP

100

W-AHCAL 2011. π+ Data

QGSP BERT HP

Analysis of π^+ data: radial profiles

 Monte Carlo predicts a higher energy density in the core of the shower than observed

Analysis of π^+ data: track length

- Track selected with HCalTrackingNNProcessor, algorithm described in CAN.022
- Selection not optimised for track analysis (tracks passing at least 10 layers were selected for MIP calibration studies)

Analysis of proton data

$proton/\pi^+$ ratio

• For a non-compensating calorimeter (e/h > 1), expect $E_{protons} < E_{\pi^+}$ (because $\pi^0 \rightarrow \gamma$ production is, on average, smaller in proton-induced showers)

Analysis of K^-/K^+ data

- K⁺: good agreement between data and QGSP_BERT_HP/FTFP_BERT_HP
- QGSP_BIC_HP predicts too low energy

Summary and conclusions

- Negative polarity runs have higher response than positive polarity runs (variations of detectore response with time of about 3%)
- e⁺: disagreement between data and simulation (partially explained by imperfect scaling factors of the SiPM response curves)
- π⁺, protons and K⁺: good agreement between data and QGSP_BERT_HP

2011 and 2010 data

- $\bullet\,$ We have one common energy point between the 2 data taking periods: 10 GeV π^-
- Unfortunately 2011 negative polarity runs have higher response than positive ones ⇒ difficult to compare data of the 2 periods in order to judge on the compatibility, but can use Monte Carlo

• The agreement between data and QGSP_BERT_HP for positively charged particles indicates that the hadronic energy scales for 2011 and 2010 data taking agree

Outlook

Lessons learned...

- An optimised system could be realised considering:
 - Temperature stabilisation:
 - Usage of SiPMs with reduced temperature sensitivity, and/or of an improved temperature measurement system
 - Usage of temperature stabilisation system as for the CALICE digital HCAL test beam in 2012 at the CERN SPS
 - Calibration data: Taking high statistics of muon calibration runs at stable temperatures, and with large trigger counters, covering as much as possible the whole detector, such that all channels can be calibrated
 - Improved test-bench characterization of SiPMs: need better knowledge of saturation response curves
 - Analysis procedure: Development of a procedure to allow the analysis of the calibrated and temperature corrected data in a short time scale (\sim a few hours), to allow for quick feedback
- Many more details about the analysis: CLCD-Note-2013-002

BACK-UP

Data:			
Particles	Measurement	Assumed shifts	Total uncertainty
40 GeV <i>e</i> ⁺	Energy sum	$\pm 2.0\%$ (MIP scaling factor) $\pm 2.0\%$ (stability of detector response) +3%, $-2.0%$ (saturation scaling)	+3.5% -4.1%
	Longitudinal profile	$\pm 2.0\%$ (MIP scaling factor) $\pm 2.0\%$ (stability of detector response) +9%, $-10%$ (saturation scaling)	+9.4% -10.4%
π^{\pm}	Energy sum	$\pm 2.0\%$ (MIP scaling factor) $\pm 2.9\%$ (stability of detector response) -0.5% (saturation scaling)	+3.5% -3.6%
Protons	Energy sum	$\pm 2.0\%$ (MIP scaling factor) $\pm 0.7\%$ (stability of detector response) -0.5% (saturation scaling)	+2.1% -2.2%

• Simulation: +5% in the energy scale due to imprecise knowledge of the cross-talk factor