Interactions of hadrons in the SiW ECAL

Naomi van der Kolk

Aim

- Revise the analysis presented in CALICE Analysis Note CAN-025 on the FNAL 2008 SiW ECAL testbeam data
- Analysis Note: Study the interactions of π⁻ in the SiW ECAL at low energies (2 – 10 GeV) and compare various Monte Carlo Models (physics lists) to this data
- Check the analysis and make minor improvements and adjust the note to make it into a publication

CAN-025
Interactions of hadrons in the CALICE SiW
ECAL prototype
Philippe Doublet, Michele Faucci-Giannelli, Roman Pöschl, François Richard for the CALICE Collaboration
This note contains preliminary CALICE results, and is for the use of members of the CALICE Collaboration and others to whom permission has been given.
Abstract
This article presents results of test beams obtained for pions with
energies between 2 and 10 GeV which interact in the volume of the highly granular CALICE Silican Tungstan electromegnatic colorime
ter prototype (SiW ECAL). An algorithm optimised to find interac-
tions in the SiW ECAL at small hadron energies is developed. This

Analysis setup

- Event sample:
 - SiW ECAL physics prototype
 - 2008 FNAL testbeam of π^{-} at 2, 4, 6, 8 and 10 GeV
 - Matching Monte Carlo with FTFP_BERT, QGSP_BERT and LHEP physics lists (add more)
- Event cuts:
 - correct trigger, minimum number of hits (25), hits in correct region of Ecal (centre), minimum hit energy (0.6 mip), no noisy layers, muon rejection

Energy (GeV)	Events processed MC	Accepted events QGSP_BERT	Accepted events FTFP_BERT	Accepted events LHEP	Events processed Data	Accepted events Data
2	500000	24824	24729	26806	146649	19893
4	500000	124932	124164	121182	267988	121027
6	500000	199830	204490	204496	114702	71615
8	500000	258129	260870	257141	327404	229058
10	500000	291970	292921	288504	738356	446059
3/19/	2013		CALICE Collaborati	on Meeting		3

Event Classification

- Event classification based on 4 interaction types:
 - Interacting: FireBall (inelastic hadronic interaction) and Peaked (inelastic interaction with low energy transfer)
 - Non-interacting: Scattered (elastic scattering) and Mip
- The absolute and relative energy increase in subsequent layers defines the interaction point.
 - FireBall -> absolute increase and long range relative increase
 - Peaked -> short range relative increase
 - Scattered -> Displaced outgoing track
 - Mip -> all the rest
- Focus on interacting/non-interacting for the publication and refine the event classification with machine learning techniques

Rejection efficiency for events with multiple incoming particles

- A muon may coincide with a pion
- Reject such events from the analysis by rejecting events with two large clusters of hits in the first 8 layers that have a small slope.
- Simulate "double events" -> Overlay pion events with muon events (add the hit collections together)
- Eff = #rejected/#total

Energy (GeV)	Eff for double events (pion + muon)	Eff for single events (pion)
2	0.806	0.123
4	0.74	0.139
6	0.852	0.149
8	0.838	0.155
10	0.810	0.156

MC physics list FTFP_BERT

3/19/2013

Estimate the contamination of "double events" in the accepted event sample in data

- Upper limit: Assume all rejected events were real double events contamination = (1-eff_d)/eff_d*rejected
- Estimate: rejected events are the sum of double and single events contamination = (1-eff_d)*(rejected - eff_s*total)/(eff_d - eff_s)

Energy (GeV)	Upper limit	Contamination	Original fraction
2	0.155	0.125	0.393
4	0.166	0.116	0.305
6	0.058	0.028	0.142
8	0.086	0.053	0.225
10	0.059	0.017	0.070

Event type fractions

 π^{-} data and Monte Carlo (QGSP_BERT, FTFP_BERT and LHEP)

Interaction finding Efficiency

Monte Carlo π^{-} events (QGSP_BERT, FTFP_BERT and LHEP)

Energy (GeV)	Efficiency QGSP_BERT	/ FTFP_BERT	/ LHEP	Contaminati QGSP_BERT	on / FTFP_BERT	/ LHEP
2	0.651	0.656	0.786	0.036	0.023	0.033
4	0.841	0.839	0.915	0.038	0.033	0.036
6	0.895	0.945	0.956	0.042	0.040	0.042
8	0.916	0.952	0.962	0.047	0.045	0.045
10	0.944	0.952	0.957	0.049	0.048	0.044

Efficiency

=

fraction of all true interacting events that is classified as interacting

Contamination

=

fraction of all events classified as interacting that is non-interacting

Longitudinal Energy Profile for events classified as interacting

 π^{-} data and Monte Carlo (QGSP_BERT, FTFP_BERT and LHEP) 2 GeV 4 GeV 6 GeV 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 6(Speudolayer number Speudolayer numbe Speudolaver number 8 GeV 10 GeV 0 Data Monte Carlo LHEP Monte Carlo QGSP_BERT Monte Carlo FTFP_BERT Layer 0 is the interaction layer 10 20 30 40 50 60 10 20 30 40 50 60 Speudolayer number Speudolayer number

Longitudinal Energy Profile for events classified as non-interacting

 π^{-} data and Monte Carlo (QGSP_BERT, FTFP_BERT and LHEP)

Mean Shower Radius for events classified as interacting

 π^{-} data and Monte Carlo (QGSP_BERT, FTFP_BERT and LHEP)

Next...

- New MC production to add more physics lists to the comparison
- Error calculation wrt double event rejection and interaction finding efficiency
- Thorough check of all the cuts
- Since October a collaboration between LAL and LLR ILC groups and LAL AppStat group to better characterise and understand hadronic showers using machine learning techniques. First step: finding the most discriminating features (characteristics) of the shower and testing different machine learning techniques.
 - B. Kegl, F.Dubard,
 V. Boudry, M. Ruan, T.H. Tran,
 R. Poeschl, N. van der Kolk
 Special thanks to T. Frisson and D. Benbouzid

[Backup]

Selection criteria for event types

- Interacting
 - FireBall (inelastic hadronic interaction)
 - Absolute energy increase $E_i > E_{cut} \&\& E_{i+1} > E_{cut} \&\& E_{i+2} > E_{cut}$
 - Relative energy increase $F=(E_i+E_{i+1})/(E_{i-1}+E_{i-2})>F_{cut} \&\& F' = (E_{i+1}+E_{i+2})/(E_{i-1}+E_{i-2})>F_{cut} \&\& E_{aroundi}>0.5E_i$
 - Peaked
 - Local relative energy increase F>F_{cut} && F' > F_{cut} not valid anymore at layer i+3
- Non-interacting
 - Scattered (elastic scattering)
 - Lateral distance of two pixels or more between the incoming and outgoing track
 - Mip
 - All events which do not fit the other criteria

Event type fraction Previous version

Mean Shower Radius for events classified as non-interacting

Step 1: SelectAndConvert

Step 2: MipFinder2

Input collection "ConvCalorimeterHits"

Assign each hit to its layer object

Find the first layer with a hit

Start clustering in the first layer up to the 8th layer. If hits are closer than a minimum distance they are added to that cluster. Else they seed a new cluster

Merge clusters if they are close enough together Select the most likely candidate cluster (with more that 3 hits) based on the slope of a fit to the cluster hits

Reject the event if there are two large clusters with a slope less than 0.7

Add the cluster with the smallest slope to the output cluster collection "EcalClusters"

Step 3: InteractionFinder

Step 4: CaliceEcalHitInfo

