Small Scintillator Tiles & Inter-tile Crosstalk Revisited

Miroslav Gabriel

Max-Planck-Intitut für Physik

CALICE meeting

Hamburg March 2012

Outline:

New tile geometries

- Motivation
- Test setup
- Results
- Conclusion

2 Tile crosstalk

- Motivation
- Test setup
- Results
- Conclusion

Motivation:

New tile geometries:

- Small square and hexagonal tiles with simple dimple geometry
- 3mm and 5mm layer thickness each
- Covered in highly reflective foil

- ⁹⁰Sr source mounted on xy stage
- β-particle traverses through examined tile
- Second small scintilltor(cube) functions as a trigger
- Trigger: energy deposited exceeds threshold

- ⁹⁰Sr source mounted on xy stage
- β-particle traverses through examined tile
- Second small scintilltor(cube) functions as a trigger
- Trigger: energy deposited exceeds threshold

 \Rightarrow Waveform from the tile is recorded

Results for 5mm thickness:

- For reference: 30x30x5mm³ T3B tile, same MPPC ≈30 p.e
- Compared to bigger tiles slightly decreased uniformity

- Square tile $10 \times 10 \times 5 mm^3 \approx 40$ p.e.
- Hexagonal(a=10mm,h=5mm) tile
 ≈40 p.e.
- $\approx 30\%$ more light than T3B

Results for 3mm thickness:

- Equal uniformity
- Preliminary hexagonal (a=10mm,h=3mm) tile ≈ 50 p.e.
- Square 10x10x3 mm^3 tile \approx 60 p.e.!

Conclusion:

- Uniformity not equal but acceptable
- Decreasing thickness for
 - Square tile: 40 p.e. → 60 p.e.
 - Hexagonal 40 p.e. →
 50 p.e.
- Light collection efficiency strongly depends on aspect ratio

30x30x5mm³ T3B tile for size comparison:

- In the real HCAL there will be a lot of tiles
 → how big are the dead zones in between?
- Percentage of reflection < 100%
 - \rightarrow is crosstalk a problem?

- Almost same setup as before
- Two tiles next to each other
- Xy-scan over both
- Russian ITEP tile with paint
- T3B tile with foil

- Gap sizes in the order of magnitude of 100μm per tile
- Crosstalk
 - T3B tile $\approx 0.5\%$
 - ITEP tile $\approx 2\%$
- Both cases well beneath the threshold

Conclusions:

- Gap size
 → present but
 acceptable
- Crosstalk
 - \rightarrow no problem!

Questions?

Backup

Abbildung: light output over wavelength for used scintilltors

Abbildung: reflectivity over wavelength for used foil

Abbildung: russian ITEP tile with thickness of 3mm and \approx 15 p.e.

Abbildung: T3B tile with thickness of 5mm and \approx 30 p.e.

