

Update on DHCAL and RPC progress

Lei Xia ANL - HEP

Outline

- Summary DHCAL test beam activities
- Progress on test beam data analysis
- RPC R&D progress

DHCAL test beam has finished!

- Last DHCAL test beam period at CERN with W absorber finished in Nov. 2012.
 - Got more hadron data at high momenta, and did another muon run
 - Tried high-gain mode of the DCAL chip, and measured change in rate capability
 - Experienced a sudden gas gain change understood why

DHCAL Data Summary

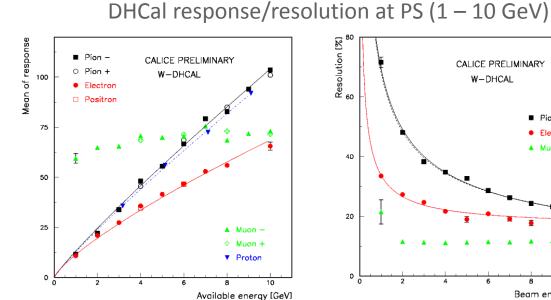
Testbeam	Configuration	Muons ³	Secondary beam ³	Total ³
Fermilab ¹	DHCAL	6.9	9.3	16.2
	SiW ECAL + DHCAL	2.5	5.1	7.6
CERN ²	DHCAL	5.6	23.4	29.1
TOTAL		15.0	37.8	52.8

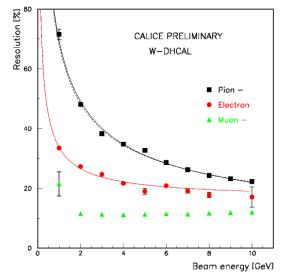
¹Contains a significant fraction of 'calibration events'

²Contains no 'calibration events'

³Numbers in millions

DHCAL prototype has been shipped back to ANL

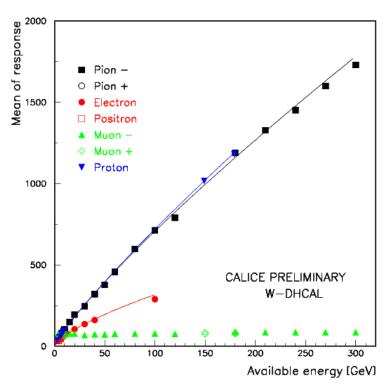

- What should we do next (with the prototype)?
 - Have a few ideas, but suggestions are very welcome

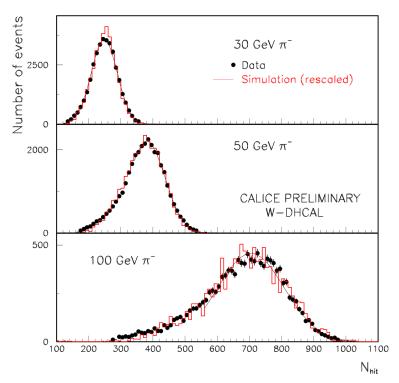


Data analysis

- Results from the first look of the data exist (and were reported at conferences)
- Analysis towards final publications is on-going
 - ANL team is analyzing the data from Fermilab test beam
 - ANL and CERN group will work together on CERN test beam data, with CERN playing a major role
 - We made a lot of progress, but things are not easy
 - Calibration is significantly more complicated than we anticipated
 - Shortage of manpower is slowing us down

Muon response/simulation

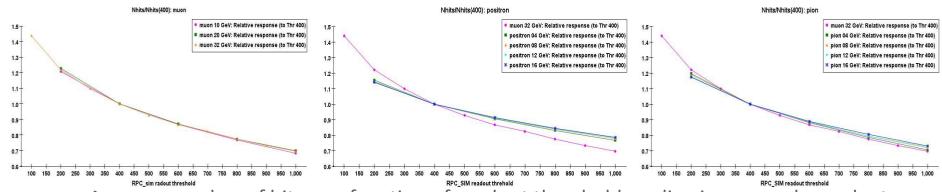



SiD workshop

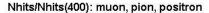
 $\chi^2 = 1074$

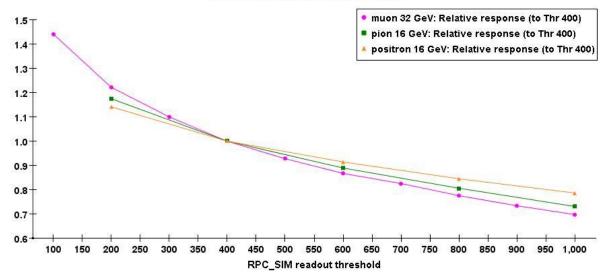
More preliminary results from CERN data

Response at the SPS (12 - 300 GeV)



Comparison with Simulation – SPS energies (data: not calibrated; simulation: rescaled)


Data analysis: calibration

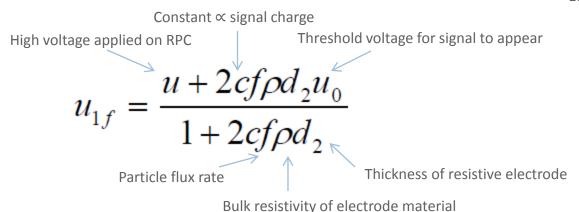

- DHCAL calibration was though to be simple and painless
 - Control parameters: RPC efficiency (ϵ), multiplicity (μ)
 - DHCAL response, to first order, should scale with 'calibration factor' = $\varepsilon \times \mu$
 - In deed, this calibration scheme works to first order, more or less
- To go further, things become complicated
 - Due to the fact that some pads were hit by more than one particle, these hits scale differently from the others
 - Number of particles hitting a pad can be approximated by local hit density, which changes with energy and type of showering particle
 - As a result, calibration may have hit density, energy, particle type dependences
 - Simulation samples were generated at different signal charge thresholds, in order to study the calibration scheme

Average number of hits as a function of readout threshold: scaling is energy dependent (muon, pion and positron at several energies, all normalized to the number of hits at threshold = 400)

Data analysis: calibration

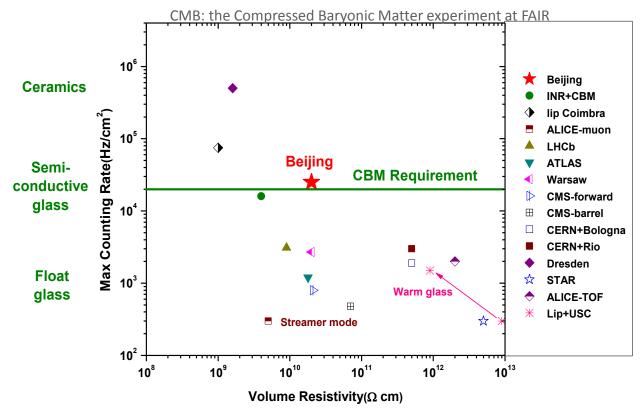
Scaling of number of hits as a function of readout threshold: particle type dependence (muon, positron, pion: all response are scaled to their own response at threshold of 400)

- Current calibration studies
 - Data driven method
 - 'Full calibration' using 'calibration factor' = $\varepsilon \times \mu$
 - Try to 'reduce' the full calibration and find new calibration functions based on local hit density
 - MC sample driven method
 - Using MC sample to study the migration of hits in density bins as a function of threshold
 - Bin by bin calibration function for each density bin, using ϵ and μ as parameters
- Both methods make a lot of progress → hope to solve the problem soon


RPC R&D progress

- R&D on improving RPC rate capability
- Progress on 1-glass RPC

RPC rate capability


- Particle flux through RPC → Signals → Current through detector, in particular through resistive electrode (glass/Bakelite) → Voltage drop on resistive electrode → Reduced voltage on gas volume → Lower gas gain, lower efficiency → limiting factor for rate capability
- For stable particle flux, after transient, the voltage on gas volume u_{1f} is:

- Ways to improve RPC rate capability
 - ρ↓: lower resistivity electrode material
 - $d_2 \downarrow$: reduce thickness of electrode
 - $c \downarrow$: operate with lower gas gain, together with more sensitive readout

Low resistivity material

• Electrode material currently available:

- Various R&D groups are exploring ways to produce low resistivity electrodes
 - Partially successful, but production cost very high

Ceramic electrode

Semi-conductive glass electrode

Finding new electrode material: glass

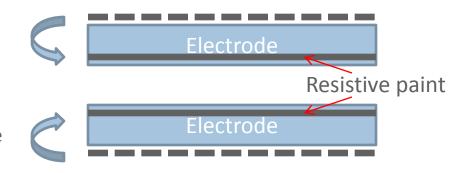
- Argonne, U. Iowa has engaged Coe College [expert in glass research] to develop affordable low resistivity glass
- Lab samples achieved resistivity in very large range:

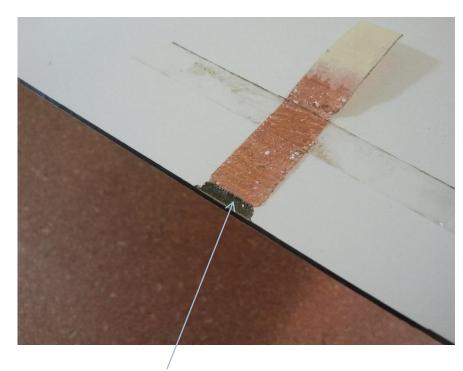
Conductivity					in S-cm					
	0)%	5%		10%	15%	20)%	25%	30%
100 V	4.8	7E-09	2.06E-	09	2.01E-09	3.14E-09	5.79	E-08	6.19E-08	7.01E-08
200 V	1.00	80-36	4.74E-	09	6.47E-09	7.80E-09	6.14	E-08	6.33E-08	7.16E-08
400 V	1.58	8E-08	6.70E-	09	1.17E-08	1.32E-08	6.89	9E-08	6.54E-08	7.26E-08
800 V	1.96	6E-08	8.10E-	09	5.24E-08	2.77E-08	9.85	E-08	6.97E-08	7.52E-08
		5%		10	%	20%		30		
	100	2.8	37E-04		1.16E-05	2.38	E-04		1.48E-03	
	200	1.3	38E-05		1.05E-05	1.14	E-05		1.56E-03	
	400	7.0	02E-06		5.44E-06	5.83	E-06		1.55E-03	
	800	3.6	61E-06		2.79E-06	2.97	E-06	2	2.97E-06	

Small size glass pieces delivered several weeks ago. Currently trying to make RPC

Finding new electrode material: Bakelite

- USTC (University of Science and Technology of China) engaged Chinese Bakelite manufacturer to work on R&D of low resistivity Bakelite material
- First batch of boards delivered
 - − Bulk resistivity $10^8 10^{10} \Omega \cdot \text{cm}$
 - Visual inspection suggests good quality



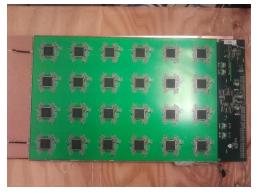

编号	厚度/mm	电阻率 /Ω•cm	室温/℃	湿度/%
15001	1.567	8.00E+09	26.1	35
15002	1.495	1.45E+10	26.4	35
15003	1.557	2.43E+10	26.8	35
15004	1.549	2.12E+10	26.9	35
15005	1.426	4.79E+10	27.1	35
15006	1.417	5.06E+10	27.1	35
15007	1.423	4.97E+10	27.3	30
15008	1.448	5.06E+10	27.4	30
15009	1.433	1.43E+09	24.2	30
15010	1.422	5.95E+10	24.9	30
20001	2.046	3.61E+10	24.8	30
20002	1.961	8.79E+09	25.1	30
20003	2.074	1.54E+09	25.6	30
20004	2.058	3.92E+09	25.6	30
20005	2.136	1.74E+10	26.2	30
20006	1.876	1.83E+10	26.4	30
20007	2.127	6.17E+08	26.7	30
20008	1.573	9.57E+08	26.7	25

 ANL agreed to evaluate the new boards. We are trying to build RPCs with this batch of Bakelite boards

Other approaches

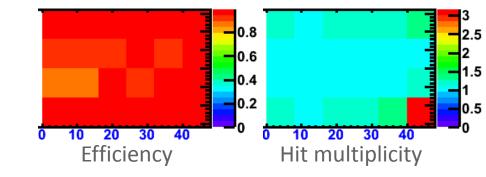
- Reducing the 'effective' electrode thickness
 - Practical electrode thickness is limited by mechanical strength: ~ 1 – 2 mm
 - However, one can try to embed the resistive coating into the electrode → reduce effective thickness that limits the rate capability
 - Bakelite boards are built layer by layer → perfect candidate to try this idea
 - USTC + Chinese Bakelite producer delivered the 1st batch of samples recently
 - Again, ANL will evaluate the new boards
- Using more sensitive readout
 - Running RPC with smallest possible signal
 → smaller signal current → smaller voltage
 drop on electrodes
 - Idea and test results reported in recent
 RPC conference*
 - Recent DHCAL test beam verified the idea with two different gain settings

Embedded graphite layer



1-glass RPC development

- 1-glass design has many advantages for DHCAL, and as a new type of RPC
 - ~1mm thinner than normal 1-gap RPC → significant cost saving for magnet
 - Can significantly simplify DHCAL calibration
 - Avoids several production difficulties: gap size control, resistive coating, coating uniformity
 - Potential better tracking resolution



- Finally, got to build 2 large (32x48 cm²) 1-glass RPC prototypes
 - Built with DHCAL prototype FEB's
 - 1 RPC leaks, but can be avoided
 - Has been running (more or less)
 continuously for ~2 months
 - Test results looks good

Summary

- DHCAL test beam has been successfully finished
- Data analysis is the current focus
 - First look of the data is pretty good
 - Calibration of DHCAL is taking shape
 - Hope to have final results soon
- More RPC R&D is on-going
 - Improve RPC rate capability
 - 1-glass RPC
 - Will have some results in the near future

