Occupancies from Beam-Related Backgrounds in SiD for the DBD

Christian Grefe

CERN

17. January 2013

Outline

2 Hit Time Structure

3 Hit Rates and Occupancies

Detector Geometry Simulation & Digitization

1 Introduction

2 Hit Time Structure

3 Hit Rates and Occupancies

4 Conclusion

Detector Geometry Simulation & Digitization

Tracker Layout

Detector Geometry Simulation & Digitization

Tracker Layout

- All-silicon tracker
- Pixelized vertex detector
 - 5 barrel layers + 7 disk layers
 - 20 µm pitch
- Main tracking detector
 - 5 barrel layers + 4 disk layers (stereo strips)
 - $25\,\mu m$ strip pitch
 - 50 μm read-out pitch
 - 100 mm strip length

Detector Geometry Simulation & Digitization

Background Samples

- \bullet Incoherent pair samples generated by $\operatorname{GUINEAPIG}$
- $\gamma\gamma \rightarrow$ hadrons generated by WHIZARD (photon spectrum from GUINEAPIG)
- Hadronization of $\gamma\gamma \rightarrow$ hadrons in PYTHIA
- Use ILC DBD beam configurations @ 1 TeV for highest occupancies

Detector Geometry Simulation & Digitization

Simulation & Digitization

- Full detector simulation using SLIC (GEANT4)
 - Incoherent pairs: single particle per simulated event
 - $\gamma\gamma \rightarrow$ hadrons: one interaction per event
- Merge events to represent 1 BX in org.lcsim
 - $\bullet\,$ Merging \sim 400k simulated pair particles impossible using LCIO merge
 - Dedicated driver in org.lcsim creating deep copies of merged objects to allow efficient garbage collection
- Run standard tracker hit digitization in org.lcsim (SiSim)
- Nearest neighbor clustering to form TrackerHits
- \bullet Apply MIP cuts for calorimeter hits: \sim 0.5 MIP in active material
- \bullet Calorimeter cell sizes: ECal $3.5\times3.5\,\mathrm{mm^2}$, HCal $10\times10\,\mathrm{mm^2}$

Hit Time Structure

Introduction

2 Hit Time Structure

3 Hit Rates and Occupancies

4 Conclusion

Hit Time Structure

Hit Time Structure (Incoherent Pairs)

- Back-scattered particles create indirect hits
- Time delay given by time of flight from the IP to the BeamCal
- Conical beam pipe can be used to shield inner detector (CLIC studies)
- Careful design of forward region is important to minimize backscatters (still to be done)

Hit Time Structure

Direct and Indirect Hits (sidloi3 Vertex Disk)

- $\bullet\,$ Back-scattered particles not symmetric in ϕ
- Hot spots projection of openings in BeamCal

Hit Time Structure

Beam Structure for ILC DBD @ 1 TeV

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

Introduction

2 Hit Time Structure

3 Hit Rates and Occupancies

4 Conclusion

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

Occupancy Estimation

- Start from hit rates
- Take into account segmentation
- Take into account average cluster size (for tracking detectors)
- Assume reading out full train (2450 BX)
- Add safety factors
 - Incoherent pairs: 5 (large uncertainty in amount of back scatters)
 - $\gamma\gamma \rightarrow$ hadrons: 2
- $\bullet\,$ Note: digitized of single BX \Rightarrow underestimate ghost hits in stereo strips

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

Tracker Cluster Sizes

Mean values

- Pixel detectors: 3.0
- Strip detectors: 2.6
- Stereo strip: 5.2 (two strips hit)

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

Vertex Detector (sidloi3, Incoherent Pairs)

 $\bullet~\mbox{Up}$ to $0.06\,\rm Hits/mm^2/BX$

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

Vertex Detector (sidloi3, Incoherent Pairs)

• Occupancies reach up to 100% over full train

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

Main Tracker (sidloi3, Incoherent Pairs)

 $\bullet~\text{Up}$ to $5\times10^5\,\text{Hits}/\text{mm}^2/\text{BX}$

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

Main Tracker (sidloi3, Incoherent Pairs)

- Occupancies reach up to 300% in strip detectors
- Occupancies reach up to 900% in stereo strip detectors

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

ECal Endcaps (sidloi3, $\gamma\gamma \rightarrow$ hadrons)

- Highest occupancy around ECal layer 9 (mean shower maximum)
- $\bullet~\text{Up}$ to $5\times10^5\,\rm{Hits}/\rm{mm}^2/\rm{BX}$
- Occupancy reaches 300% at low radii

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

ECal Endcaps (sidloi3, Incoherent Pairs)

- Highest occupancy around ECal layer 2 (mean shower maximum)
- $\bullet~\text{Up}$ to $1\times 10^4\,\text{Hits}/\text{mm}^2/\text{BX}$
- Occupancy exceeds 1000% at low radii

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

HCal Endcaps (sidloi3, Incoherent Pairs)

• Backscatters from downstream of the forward calorimeters leads to activity in the last HCal layers

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

LumiCal (sidloi3, $\gamma\gamma \rightarrow$ hadrons)

• Occupancy exceeds 100% throughout all LumiCal

Tracker Cluster Sizes Vertex Detector Main Tracker Calorimeter Endcaps Forward Calorimeters

LumiCal (sidloi3, Incoherent Pairs)

 \bullet Occupancy from incoherent pairs ~ 10 times larger

Introduction

2 Hit Time Structure

3 Hit Rates and Occupancies

Conclusion and Outlook

- Occupancies in central detectors are challenging at ILC
- Innermost barrel strip layer most critical
 - Multi-hit capability
 - Shorter strips
- Stereo strip detectors at low radii also problematic
- Innermost ECal layers need multi-hit capability
- Optimization studies of forward region and beam pipe required to reduce amount of back scattered particles

