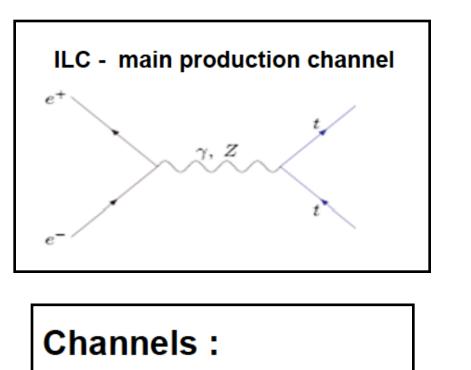


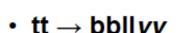
Proudly Operated by Battelle Since 1965

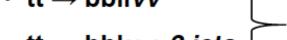
# Top Quark Anomalous Coupling Study Using the SiD

#### DAVID ASNER, MALACHI SCHRAM

January 16th, 2013

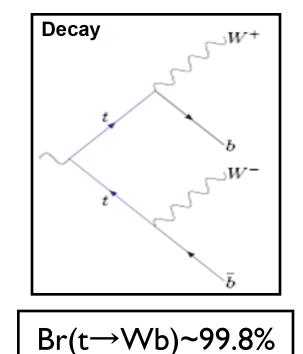




Proudly Operated by Battelle Since 1965


- Effort is based on previous LOI study
- New physics predicts deviations from the SM of the left and right top couplings to the Z.
- As such, studying the forward-backward asymmetry for each polarization provides access to each coupling

## **Event Topology**










• tt 
$$\rightarrow$$
 bblv + 2 jets (44%)

• tt  $\rightarrow$  bb + 4 jets



No missing energy allowing for kinematic constraints used b-jet calibration and top quark mass measurement

(11%)

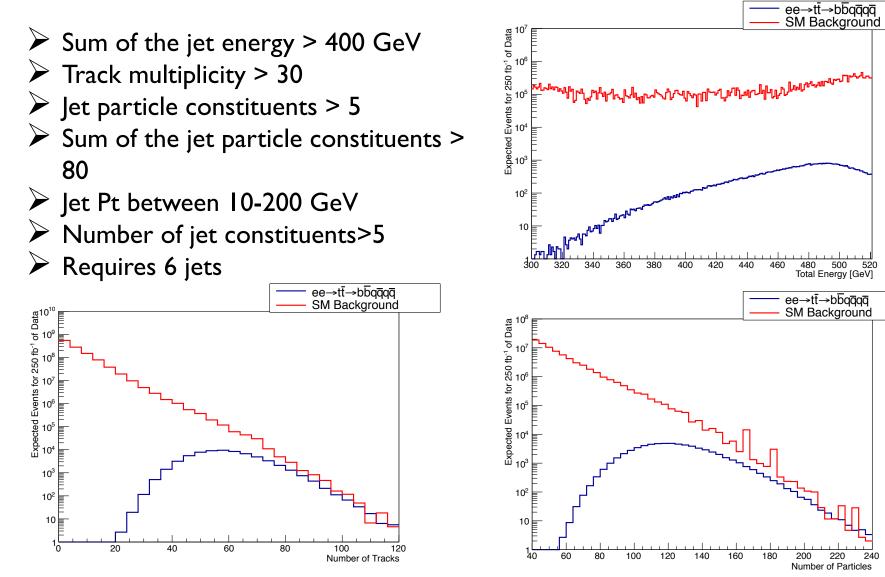
(45%)



Proudly Operated by Battelle Since 1965

Analysis was performed with E<sub>cm</sub> set to 500GeV
 6f\_ttbar\_mt174p0 (m80p30 and p80m30)
 all\_SM\_background (m80p30 and p80m30)
 Corresponds to sample numbers: 1974-1977

# **Few Words on MC Cross-Sections**


- MC signal events generated for 1000fb<sup>-1</sup> (m80p30), for 938761 which yields a cross-section of 938 fb
- There is approximately ~15% of events that are duplicated which yields a cross-section of ~800 fb
- There is also approximately ~30% events that are not ttbar, therefore cross-section is ~660 fb
- Therefore, base on these number the tt->bbqqq cross-section should be ~250 fb
- $\blacktriangleright$  This number appears to low
- Working with the Roman Poeschl to understand the cross-section provided by Whizard and provide consistent value for SiD/ILD

Operated by Battelle Since 1965

### **Pre-Selection**

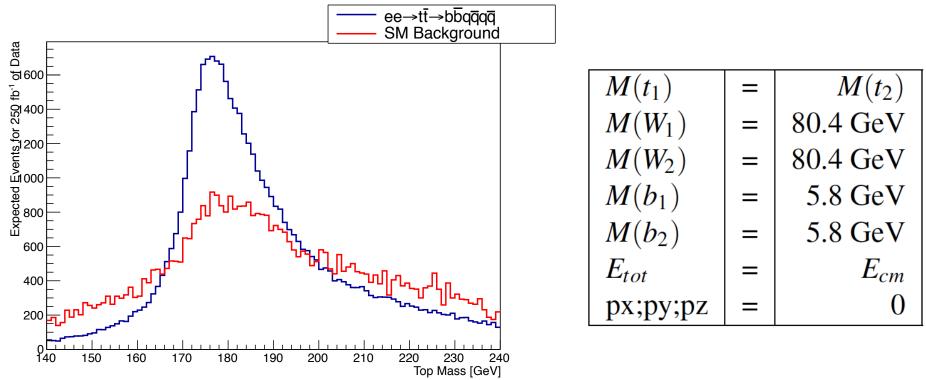


Proudly Operated by Battelle Since 1965



SiD Workshop

- The two jets with the highest b-tagging value are assume to originate from the top decay
- The jet with the highest b-tag value must have a b-tag value greater than 0.9
- The jet with the second highest b-tag value must have a btag value greater than 0.4
- The remaining 4 jets are assume to originate from the hadronic W decay
- W-boson candidates must have a mass between 50-110 GeV
- The top quark candidates must have a mass between 145-195 GeV


Pacific North

dly Oberated by **Baffelle** Since 1965

### **Reconstructed Objects**



- The top candidates where reconstructed using a Kinematic Fitter using constraints in table below
- By identifying the b-jets we reduced the combinations from
  6 to 4





Proudly Operated by Baffelle Since 1965

| Drococc             |         | lo:Hol  | Final | гæ    |             |
|---------------------|---------|---------|-------|-------|-------------|
| Process             | Raw MC  | initiai | Final | Eff.  | X-sec [fb]  |
| Mt174p0 (-80%/+30%) |         |         |       |       |             |
| (signal)            | 821535  | 65448   | 15616 | 0.239 | 261.79±2.67 |
| Mt174p0 (+80%/-30%) |         |         |       |       |             |
| (signal)            | 410354  | 31048   | 7554  | 0.243 | 124.19±1.79 |
|                     |         |         |       |       |             |
| Sum                 | 1231889 | 96496   | 23170 | 0.240 | 192.99±1.61 |

- Analysis for 250fb<sup>-1</sup> per polarization
- Uncertainty on the cross-section is 1.02%, 1.44%, and 0.83%
- Errors are based on the statistical uncertainty of the expected number of events
- \*Values are based on input from Whizard





- For the A<sub>FB</sub> measurement we must assign each top candidate a charge.
- The top candidate charge is determined by calculating the momentum weighted sum of the charges from the tracks in the associated b-quark.
- Since we have two top candidates, we require that their charges be opposite.
- > The A<sub>FB</sub>(t) is calculated:  $A_{fb} = \frac{\sigma(\theta < 90^{\circ}) \sigma(\theta > 90^{\circ})}{\sigma(\theta < 90^{\circ}) + \sigma(\theta > 90^{\circ})}$
- The number of top candidates in each region is calculated: N<sub>sig</sub>=(N<sub>tot</sub>-N<sub>bkg</sub>)\*ε<sub>p</sub>
- The purity, ε<sub>p</sub>, is determine by matching the reconstructed top candidate with the truth particle and verifying that the charge is consistent.



 $\succ$  Using the MC truth to determine the expected A<sub>FB</sub> (t):

- A<sub>FB</sub>(+80%/-30%): 0.431
- A<sub>FB</sub>(-80%/+30%): 0.367
- A<sub>FB</sub>(mixed): 0.380
- Reconstruction numbers after cuts:
- A<sub>FB</sub>(+80%/-30%): 0.44 I
- A<sub>FB</sub>(-80%/+30%): 0.371



- Working with ILD members to finalize ttbar cross-section and the A<sub>FB</sub>
  Once this is done we will update our numbers
- Plan to work on other physics channels that are not covered in the DBD (Invisible Higgs, etc.)