Initial Results from the SLAC ESTB T-506 Irradiation Study

International Workshop on Future Linear Colliders University of Tokyo, 11-15 November 2013

Bruce Schumm Santa Cruz Institute for Particle Physics

T-506 Motivation

- BeamCal maximum dose ~100 MRad/yr
- Beam Calorimeter is a sizable: ~2 m² of sensors.
- A number of ongoing studies with novel sensoers: GaAs, CVD diamond
- Might mainstream Si sensors be of use?
- Some reasons for optimism...

Departure from NIEL (non-ionizing energy-loss) scaling observed for electron irradiation

NIELer Energy2x10-20.5 MeV5x10-22 MeV1x10-110 MeV2x10-1200 MeV

G.P. Summers et al., IEEE Trans Nucl Sci **40**, 1372 (1993)

Also: for ~50 MRad illumination of 900 MeV electrons, little loss of charge collection seen for wide variety of sensors (S. Dittongo et al., NIM A 530, 110 (2004)

But what about the hadronic component of EM shower?

Hadronic Processes in EM Showers

There seem to be three main processes for generating hadrons in EM showers (all induced by **photons**):

- Nuclear ("giant dipole") resonances Resonance at 10-20 MeV (~E_{critical})
- Photoproduction Threshold seems to be about 200 MeV
- Nuclear Compton scattering Threshold at about 10 MeV; ∆ resonance at 340 MeV

These are largely isotropic; must have most of hadronic component develop near sample

N.B.: Tungsten very expensive; undying gratitude to Leszek for loaning it to us!

2 X₀ pre-radiator; introduces a little divergence in shower 4 X₀ post-radiator, sample, 8 X₀ beam dump

Detector Fluence Distribution (per incident e⁻)

Radius (cm)

LCLS and ESA

Use pulsed magnets in the beam switchyard to send beam in ESA.

ESTB parameters

Table 1.1.1. ESTB primary electron beam parameters and experimental area at the BSY and in ESA

Parameters	ESA	
Energy	35-10.5 (for now)	75 GeV
Repetition Rate	Up to 10 Hz!	5 Hz
Charge per pulse	<mark>≤ 0.15 nC</mark>	0.35 nC
Energy spread, σ_E / E	0.02%	
Bunch length rms	100 µm	
Emittance rms ($\gamma \varepsilon_x, \gamma \varepsilon_y$)	(4, 1) 10 ⁻⁶ m-rad	
Spot size at waist $(\sigma_{x,y})$	$< 10 \ \mu m$	
Drift Space available for exp apparatus	60 m	
Transverse space available fe apparatus	5 x 5 m	

July 1 00:00-July 31 23:59 2012, BEND:DMP1:400:BACT

Daughter Board Assembly

Pitch adapter, bonds

IN LAW DR.

141 A.R. 144

"I"

191 195

4

16.

14 121 000

Inch

4 X₀ Radiator

8 X₀ Beam Dump (Slides into position)

BEAM

Dose Rates (Including 1 cm² Rastering)

Mean fluence per incident e

Electron	Shower Conversion	Dose per nC I	Delivered	
Energy (GeV)	Factor α	Charge (kl	Rad)	
2	2.1	0.34		
4	9.4	1.50	Confi	irmed
6	16.5	2.64	with R	
8	23.5	3.76		
10	30.2	4.83		IN 10%
12	36.8	5.89		

Maximum dose rate (10.6 GeV; 10 Hz; 150 pC per pulse): 28 Mrad per hour

Daughter/Readout Board Assembly

Charge Collection Apparatus

Charge Collection Measurement 2.3 MeV e⁻ through sensor into scintillator

Channel-overthreshold profile

Efficiency vs. threshold

T506 Doses

"P" = p-type "N" = n-type "F" = float zone "C" = Czochralski

Sensor	V_{FD}	Irradiation	Beam Energy	Delivered	Dose
		Temp. (C)	(GeV)	Charge (μC)	(MRad)
PF05	190	0	5.88	2.00	5.13
PF14	190	0	3.48	16.4	19.7
PC10	660	0	5.88	1.99	5.12
PC08	700	0	(5.88, 4.11, 4.18)	(3.82, 3.33, 3.29)	20.3
NF01	90	0	4.18	2.30	3.68
NF02	90	0	4.02	12.6	19.0
NF07	100	5	8.20	23.6	91.4
NC01	220	0	5.88	2.00	5.13
NC10	220	0	3.48	15.1	18.0
NC03	220	5	4.01	59.9	90.2
NC02	220	5^{*}	(10.60, 8.20)	(32.3, 13.8)	220

Results: PF sensors

Median Charge vs Bias Voltage, P-type Float Zone sensors

Results: PC sensors

Median Charge vs Bias Voltage, P-type Magnetic Czochralski sensors

Results: NF sensors low dose

Results: NF sensors high dose

Bias Voltage

Results: NC sensors

Median Charge vs Bias Voltage, N-type Magnetic Czochalski sensors

Summary of Results by Sensor Type

Sensor	Dose	Median CC Before	Median CC After	Fractional
	(MRad)	Irradiation (fC)	Irradiation (fC)	Loss $(\%)$
PF05	5.1	3.70	3.43	7
PF14	20	3.68	3.01	18
PC08	20	3.51	3.09	12
NF01	3.7	3.76	3.81	0
NF02	19	3.75	3.60	4
NF07	91	3.75	3.73	
NC01	5.1	3.71	3.80	$\overline{0}$
NC10	18	3.76	3.74	1
NC03	90	3.68	3.55	4
NC02	220	3.69	3.06	17

Summary and Conclusions

- We have completed the first irradiation damage study at SLAC ESTB (article submitted to NIM)
- N-bulk sensors show promise
- Need to carry out annealing studies with CV/IV
 measurements on selected sensors
- Want to confirm results, go to higher fluence
- Further runs with other sensor technologies (GaAs, CVD diamond?) [US funding issues...]
- One scenario: Si in most of BeamCal detector, more costly/higher-risk technologies in highest-dose regions?