## **AHCAL Electronics**

Status of HBU, EBU and SM\_HBU

Mathias Reinecke

CALICE meeting Annecy, Sept. 10th, 2013











### **Outline**

- AHCAL electronics status and results
  - Hardware status
  - Problem: Switch-On order
  - Problem: Destroyed SPIROCs
  - Beam- / Noise rate and SPIROC2d/3 considerations
- SM\_HBU Status (AHCAL option)
- EBU Status (ScECAL)



Shower in 5 AHCAL layers (DESY testbeam)



## **AHCAL** operation in ILC-like environment





- Operation for the first time in steel cassettes with final dimensions and in absorber stack.
- No increased noise, no obvious shift of MIP position with respect to lab setup.
  => dense EUDET mechanical concept validated!



### **Hardware Status**

- > HBU2: (two production runs): 14 boards. (tiles?)
- > FE-DAQ: DIF (NIU), CIB, POWER and CALIB: 20 boards.
- Flexleads (2 types, a lot in use): 14 boards (each type)
- EBU vertical: 4 boards
- EBU horizontal: 4 boards (in production, expected beginning Oct.)
- > SM\_HBU: 2 boards
- Delivered complete sets (HBU/EBU/SM\_HBU + FE-DAQ modules) to: Shinshu, Mainz, NIU. One further HBU to Wuppertal.



#### **New 8 HBU2 boards**

- All 8 new HBU2s have been tested and work fine.
- Problem: Significant spread of board dimensions within the 8 boards. Landmarks differ up to 0.4mm (0.1mm was specified).
- Problems during PCB assembly and with the steel cassettes (individual cassettes needed).



From the discussion with PCB manufacturer: For the next order, there will be a pre-compensation process step for the inner pcb layers before the pressing operation. This will solve the problem as it did for the first 6 HBUs.



### **Detector Power-Up Problem**



- Arbitrary operating conditions in multilayer setup (very seldom in single-layer setup): Stuck TDC, spontaneous noisy channels, shifted MIP position.
- > SPIROC reset does not help, only re-powering helped.



### **Solution for Power-Up Problem**



- Problem identified: After power-up and booting, the DIF FPGA sets TTL lines to SPIROCs before enabling SPIROC's power. => SPIROCs get power through protection diodes of input channels.
- New switch-on order cured the problem.



#### **Broken SPIROCs in testbeam**

- During testbeam 6 out of 20 SPIROCs on three HBU2s have been damaged.
- Damage is the same for all chips: oscillating input DACs.
- Best explanation so far: SiPM pins have damaged the isolating foil and touched the steel cassette's top plate. => Stronger foil ordered.









### Beam rate to noise rate considerations

Can we operate 1m³ (~600 SPIROCs) with current SiPMs and ASICs?



- Simulation studies of beam/noise-rate started to investigate the amount of noise events in the AHCAL detector for various operation conditions.
- Exponential distributions for noise- and beam rates assumed. Different trigger architectures and memory depths under study.
- > First conclusion: First memory cell problem (ADC data "0") must be solved (low occupancy in last layers). Was solved for SP2c already.

### **Trigger Validation (Testbeam mode)**



Only stores events that are validated by an external trigger signal

- Validation works fine: Histogram only shows MIP events without noise/pedestal contributions.
- Problem: Validation does not work for noise hits between no\_trig and rising CK\_5M edge (200-400ns). Triggers in this period should be rejected (=> dead time).
- Now: Factor 10 noise reduction. Improve 400ns window size.



### **Northern Illinois University**

#### **Integrated Readout Layer**

- Uses HBU2 FE
- Hamamatsu MPPC mounted on small flex circuits
- Scintillator "Megatile" with 3 x 3 cm cells optically isolated with white epoxy
- Cells have a concave dimple improve the uniformity of the response and to direct light through hole in board onto MPPC
- Easier to assemble, does not need WLS optical fiber







### **EBU status (ScECAL)**

- EBU-vertical (right): 4 boards realized
- EBU-horizontal (left): 4 boards in production, expected beginning of October:
- Final ScECAL module assembly from Shinshu at DESY in close coorporation.





EBU-horizontal requires long flexleads for EBU/EBU connection (in layout design).



### **EBU status (ScECAL)**





- 2 ScECAL layers in lab, perpendicular strip orientation
- 1 setup with 2 EBUs in a row,1 setup with 1 EBU

- Two ScECAL layers with two AHCAL layers together in DESY testbeam, operated synchronously and together by the AHCAL DAQ.
- For results see Shinshu talk.



#### Conclusions

- Multilayer operation of AHCAL (and ScECAL) has been established. Further modules in production.
- > 2<sup>nd</sup> EBU-type in production.
- SM\_HBU with big progress at NIU.
- Additional things to keep in mind for SPIROC2d / SPIROC3: <a href="https://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=5891">https://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=5891</a>: talk: "Experiences with the AHCAL testbeam prototype"
- Ongoing studies: Power-Pulsing with slab (6 HBU2s).



# Backup Slides



#### **Towards the next SPIROC**

### Topics to keep in mind ...

- Pedestal shift @ huge signals, pedestal different for internal/external trigger.
- Memory cell dependent amplitude decay. Solved by compensation caps.
- Slow-Control configuration is problematic for long slabs.
- Feedback of channel-wise trigger thresholds on the global threshold.
- Random zero events and zero-results for the first trigger.
- Poor uniformity of the input DACs.
- Holdscan is different for HG/LG.
- Trigger threshold width increases with threshold height.
- Amplitude-to-threshold relation depends on preamp. setting and pulse shape.
- TDC: Amplitude dependent time-shifts and channel-to-channel spread.
- TDC: Result depends on which ramp is used and the memory cell.
- TDC: big chip-to-chip spread of ramp slopes.



### **Power and Power Pulsing (PP)**

- Aim: Switch on as short as possible before data taking starts (initial idea: 20µs).
- Results with charge injection show a decreased amplitude response with PP.
- Single-Pixel Spectra measurements show a reduced amplitude with PP.
- Aimed power dissipation of 20µW per channel not reached yet.



### **TDC Calibration – CERN Module**

- Calibration of all 16 SPIROC2b ASICs of the CERN Testbeam-module with charge injection.
- Chip-to\_chip spread of the TDC ramp slopes: Calibration necessary: TDC (time measurement!).





### **TDC: Time Walk and Channel-to-Channel Spread**



- > Amplitude-dependent time-shifts and channel-to-channel differences.
- Difficult to parameterize because of different behaviours. Channel-wise TDC calibration necessary as for ADC (MIP calibration)?



### TDC: Memory Cell Dependence and "2-Ramp" Problem



- TDC result depends on memory cell
- The SPIROC2b internal TDC ramps have different amplitudes and for a specific event it cannot be identified with which ramp the TDC result has been achieved (known problems).



#### **Start-Run Problem**



CERN testbeam

High noise on pedestal for first 1-2 readout cycles



#### **Slow-Control Problem**

For longer AHCAL slabs, the slow-control programming is instable. Reason: Slow-control clock, special pulse-shape needed (series R, termination R, block-C)





- Although the slow-clock looks fine, the configuration does not work.
- Analysis ongoing, I2C in SPIROC3.

